K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

a) Xét \(\Delta ABC\)\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\) MN//BC (định lí Ta-lét đảo)

b) Xét \(\Delta AIB\) có MK // BI ( vì MN // BC)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MK}{BI}\) ( hệ quả của định lí Ta-lét)

C/m tương tự, ta có: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{MK}{BI}=\dfrac{KN}{IC}\)

\(BI=IC\Rightarrow MK=KN\)

\(\Rightarrow\) K là trung điểm của MN

\(\)

23 tháng 4 2018

Cảm ơn bạn nhiều

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK 

 

Xét ΔABC có 

M∈AB(gt)

N∈AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)

Do đó: MN//BC(Định lí Ta lét đảo)

Suy ra: MK//BI và NK//CI

Xét ΔABI có 

M∈AB(gt)

K∈AI(gt)

MK//BI(Gt)

Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔACI có 

K∈AI(gt)

N∈AC(gt)

KN//IC(cmt)

Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)

mà BI=CI(I là trung điểm của BC)

nên MK=NK(đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 6 2018

Hỏi đáp Toán

10 tháng 6 2021

A B C I N M K

Ta có: 

\(\dfrac{MK}{BI}=\dfrac{MA}{AB}\)             \(\dfrac{NK}{IC}=\dfrac{AN}{AC}\)

\(\dfrac{\Rightarrow MK}{BI}=\dfrac{NK}{CI}\)

Mà \(BI=IC\Rightarrow MK=NK\) 

-Chúc bạn học tốt-

1 tháng 3 2015

AM/AB = AN/AC nên MN//BC (Ta let đảo)

Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)

Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN

AM/AB = AN/AC nên MN//BC (Ta let đảo)

Ta có MK//BI => MK/BI = AK/AI (hệ quả talet)

Tương tự KN/IC = AK/AI => MK/BI = KN/IC mà BI = IC => MK = KN

a: Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

b: Xét ΔABD có 

MK//BD

nên \(\dfrac{MK}{BD}=\dfrac{AM}{AB}=\dfrac{5}{6}\left(1\right)\)

Xét ΔACD có 

KN//DC

nên \(\dfrac{KN}{DC}=\dfrac{AN}{AC}=\dfrac{5}{6}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{KM}{BD}=\dfrac{KN}{DC}\)

mà BD=DC

nên KM=KN

hay K là trung điểm của MN