\(\Delta ABC\) có trung tuyến AM. Tỉ số diện tích giữa \(\Delta...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

A B C M H

kẻ AH là đường cao \(\Delta\)ABC

\(\Rightarrow\)AH là đường cao \(\Delta\)ABM và\(\Delta\)ACM

\(\Rightarrow\)\(S\Delta ABM=\frac{AH\cdot BM}{2};S\Delta ACM=\frac{AH\cdot CM}{2}\)

Mà CM = BM(AM là đương trung tuyến)

\(\Rightarrow\)\(S\Delta ABM=S\Delta ACM\Rightarrow\frac{S\Delta ABM}{S\Delta ACM}=1\)

26 tháng 11 2017

Bạn ơi có nhầm lẫn gì ko?

Trắc nghiệm1.\(\Delta A'B'C'\)~ \(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:A.6cm           B.10cm               C.12cm             D.22,5cm2.Chọn phát biểu đúng trong các phát biểu sau:A.Hai tam giác cân thì đồng dạng với nhauB.Hai tam giác đồng dạng thì bằng nhauC.Hai tam giác vuông...
Đọc tiếp

Trắc nghiệm

1.\(\Delta A'B'C'\)\(\Delta ABC\)theo tỉ số đồng dạng k=\(\frac{3}{2}\).Gọi AM,A'M' lần lượt là các đường trung tuyến của \(\Delta ABC\)và \(\Delta A'B'C'\).Biết A'M'=15cm,độ dài AM là:

A.6cm           B.10cm               C.12cm             D.22,5cm

2.Chọn phát biểu đúng trong các phát biểu sau:

A.Hai tam giác cân thì đồng dạng với nhau

B.Hai tam giác đồng dạng thì bằng nhau

C.Hai tam giác vuông cân thì đồng dạng với nhau

D.Hai tam giác vuông bất kì thì luôn đồng dạng

3.\(\Delta ABC\)\(\Delta DEF\)và \(\frac{S_{ABC}}{S_{DEF}}\)=\(\frac{4}{9}\).Tỉ số đồng dạng của chúng là:

A.3            B.\(\frac{1}{2}\)                  C.\(\frac{1}{4}\)            D.\(\frac{2}{3}\)

4.Cho \(\Delta ABC\)\(\Delta MNP\)sao cho \(\frac{S_{ABC}}{S_{MNP}}\)=9.Ta có:

A.\(\frac{AB}{MN}\)=9          B.\(\frac{AB}{MN}\)=\(\frac{1}{9}\)            C.\(\frac{AB}{MN}\)=3             D.\(\frac{AB}{MN}\)=\(\frac{1}{3}\)

0
17 tháng 5 2017

A B C M N P H K

Kẻ \(BH⊥AC;NK⊥MP\)

Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)

Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)

26 tháng 6 2020

Bạn tự vẽ hình nha

a, Xét \(\Delta BHA\) \(\Delta BAC\) có :

\(\widehat{B}:chung\)

\(\widehat{BHA}=\widehat{BAC}=90^o\)

\(\Rightarrow\) \(\Delta BHA\sim\Delta BAC\left(g.g\right)\)

b, Đề phải là chứng minh AH2=BH.CH

Xét \(\Delta AHB\) \(\Delta CHA\) có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\widehat{ABH}=\widehat{CAH}\) ( cùng phụ với \(\widehat{BAH}\))

\(\Rightarrow\) \(\Delta AHB\sim\Delta CHA\left(g.g\right)\)

\(\Rightarrow\) \(\frac{AH}{BH}=\frac{CH}{AH}\)

\(\Rightarrow\) \(AH^2=BH.CH\)

c, \(\Delta ABH:\) \(\widehat{AHB}=90^o\)

\(\Rightarrow\) \(AB^2=BH^2+AH^2\) ( Định lý Py-ta-go )

\(=3^2+4^2=25\)

\(\Rightarrow\) \(AB=5\left(cm\right)\)

Ta có : \(\Delta BHA\sim\Delta BAC\) ( câu a )

\(\Rightarrow\) \(\frac{S_{\Delta BHA}}{S_{\Delta BAC}}=\frac{BH^2}{BA^2}=\frac{3^2}{5^2}=\frac{9}{25}\)

26 tháng 6 2020

bạn ơi mình không hiểu chỗ \(\Delta\)ABH: \(\widehat{AHB}\)=900