Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P H K
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)
Bạn tự vẽ hình nha
a, Xét \(\Delta BHA\) và \(\Delta BAC\) có :
\(\widehat{B}:chung\)
\(\widehat{BHA}=\widehat{BAC}=90^o\)
\(\Rightarrow\) \(\Delta BHA\sim\Delta BAC\left(g.g\right)\)
b, Đề phải là chứng minh AH2=BH.CH
Xét \(\Delta AHB\) và \(\Delta CHA\) có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\) ( cùng phụ với \(\widehat{BAH}\))
\(\Rightarrow\) \(\Delta AHB\sim\Delta CHA\left(g.g\right)\)
\(\Rightarrow\) \(\frac{AH}{BH}=\frac{CH}{AH}\)
\(\Rightarrow\) \(AH^2=BH.CH\)
c, \(\Delta ABH:\) \(\widehat{AHB}=90^o\)
\(\Rightarrow\) \(AB^2=BH^2+AH^2\) ( Định lý Py-ta-go )
\(=3^2+4^2=25\)
\(\Rightarrow\) \(AB=5\left(cm\right)\)
Ta có : \(\Delta BHA\sim\Delta BAC\) ( câu a )
\(\Rightarrow\) \(\frac{S_{\Delta BHA}}{S_{\Delta BAC}}=\frac{BH^2}{BA^2}=\frac{3^2}{5^2}=\frac{9}{25}\)
bạn ơi mình không hiểu chỗ \(\Delta\)ABH: \(\widehat{AHB}\)=900
A B C M H
kẻ AH là đường cao \(\Delta\)ABC
\(\Rightarrow\)AH là đường cao \(\Delta\)ABM và\(\Delta\)ACM
\(\Rightarrow\)\(S\Delta ABM=\frac{AH\cdot BM}{2};S\Delta ACM=\frac{AH\cdot CM}{2}\)
Mà CM = BM(AM là đương trung tuyến)
\(\Rightarrow\)\(S\Delta ABM=S\Delta ACM\Rightarrow\frac{S\Delta ABM}{S\Delta ACM}=1\)