Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé:
Sơ lượt cách giải:
Dựng tam giác đều ABE sao cho điểm E nằm cùng phía với điểm C đối với đường thẳng AB.
Vì góc BAC = 750 > góc BAE =600 nên tia AE nằm giữa hai tia AB và AC.
Gọi K là trung điểm của AC suy ra AK = KC =BH (gt)
Vì góc BAC = 75 độ nên góc KAE = góc HBA = 15 độ.
Suy ra tam giác HAB = tam giác KEA (c-g-c)
Suy ra góc K = góc H =90 độ
Suy ra tam giác AEC cân tại E, suy ra góc ACE = 15 độ. Suy ra góc AEC = 150 độ.
Suy ra góc BEC = 150 độ (Vì = 360 độ - góc AEC -góc AEB =360 -150-60)
Suy ra tam giác AEC = tam giác BEC (c-g -c)
Suy ra góc BCE =15 độ suy ra góc ACB = 30 độ
Suy ra góc ABC = 75 độ suy ra tam giác ABC cân tại C
a: Xét ΔABH vuông tai H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC co
AH,CN là trung tuyến
AH cắt CN tại G
=>G là trọng tâm
c: Xét ΔABC có
H là trung điểm của CB
HE//AB
=>E là trung điểm của AC
=>B,G,E thẳng hàng
a/
\(BH\perp AC\Rightarrow HF\perp AC;ME\perp AC\) => ME//HF
\(AC\perp AB\Rightarrow EH\perp HF;MF\perp BH\Rightarrow MF\perp HF\) => EH//MF
=> MEHF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => ME=HF (cạnh đối hbh)
b/
\(\widehat{BMD}+\widehat{ABC}=90^o\)
\(\widehat{CME}+\widehat{ACB}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{BMD}=\widehat{CME}\)
Mà \(\widehat{CME}=\widehat{CBH}\) (góc đồng vị)
\(\Rightarrow\widehat{BMD}=\widehat{CBH}\)
Xét tg vuông DBM và tg vuông FMB có
\(\widehat{BMD}=\widehat{CBH}\)
BM chung
=> tg DBM = tg FMB (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
c/
Ta có ME = HF (cmt)
tg DBM = tg FMB (cmt) => MD = BF
=> MD+ME=BF+HF=BH không đổi
d/
Từ D dựng đt // AC cắt BC tại N
\(\Rightarrow\widehat{BND}=\widehat{ACB}\) Góc đồng vị)
\(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{BND}=\widehat{ABC}\) => tg DBN cân tại D => BD=ND (1)
tg DBM = tg FMB (cmt) => BD=MF (2)
Mà MF = EH (cạnh đối hbh) (3)
Mà EH = KC (4)
Từ (1) (2) (3) (4) => ND = KC
Mà ND//AC => ND//KC
=> DEKN là hbh (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
Mà DK và NC là hai đường chéo của hbh cắt nhau tại trung điểm mỗi đường => trung điểm của KD nằm trên NC mà NC thuộc BC => trung điểm KD nằm trên BC
a) Vẽ MH, rõ ràng HEMF có tổng số đo của 4 góc là 360o (vì tổng số đo của 4 góc đó là tổng số đo của các góc của các tam giác FMH và EMH)
Mà theo giả thuyết \(MD\perp AB\), \(ME\perp AC\) và \(MF\perp BH\) nên \(MF\perp ME\). Suy ra HEMF là hình chữ nhật, từ đó ME = HF.
b) Ta có \(\widehat{ABM}=\widehat{ACM}\) (vì tam giác ABC cân tại A) và \(\widehat{FMB}=\widehat{ACM}\) (vì hai góc đồng vị và AC//MF vì \(ME\perp AC\) và \(MF\perp ME\)), suy ra \(\widehat{ABM}=\widehat{FMB}\).
Xét tam giác DBM vuông tại D và FMB vuông tại F có BM là cạnh chung và \(\widehat{ABM}=\widehat{FMB}\), suy ra ΔDBM = ΔFMB (cạnh huyền - góc nhọn)
c) Từ a) và b) suy ra MD = BF, MD + ME = BF + FH = BH. Vậy khi M chạy trên đáy BC thì tổng MD + ME có giá trị không đổi.
Tham khảo