\(\Delta ABC\) cân tại \(A\)\(\wid...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

\(\widehat{A}=180^0-2\widehat{C}=180^0-2.75^0=30^0\)

\(\Delta AHC\)vuông tại H có \(\widehat{A}=30^0\Rightarrow HC=\frac{1}{2}AC\)

Mà AB = AC nên \(HC=\frac{1}{2}AB\Rightarrow AB=2CH\)

12 tháng 2 2019

A B C H

Cm: Xét t/giác ABH và t/giác ACH

có góc B = góc C (vì t/giác ABC cân tại A)

 AB = AC (gt)

 góc AHB = góc AHC = 900 (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

=> HB = HC (hai cạnh tương ứng)

=> góc BAH = góc CAH (hai góc tương ứng)

b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)

Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:

 AB2 = HB2 + AH2 

=> AH2 = 52 - 42 = 25 - 16 = 9

=> AH = 3

Vậy AH = 3 cm

c) Xem lại đề

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak
1 tháng 12 2018

hình bạn tự vẽ nha

a) \(\Delta ABC\)\(\stackrel\frown{B}=\stackrel\frown{C}\) \(\Rightarrow\Delta ABC\)cân tại \(\stackrel\frown{A}\)(1)

vì BD là tia phân giác của \(\stackrel\frown{B}\)\(\Rightarrow\stackrel\frown{ABD=}\)\(\stackrel\frown{CBD}\)(2)

vì ce là phân giác của \(\stackrel\frown{C}\Rightarrow\stackrel\frown{ECB=\stackrel\frown{ECA}}\)(3)

từ (1),(2),(3) \(\Rightarrow\stackrel\frown{CBD}=\stackrel\frown{DBA}=\stackrel\frown{BCE}=\stackrel\frown{ECA}\)

xét tam giác BCD và tam giác CBE có:

\(\stackrel\frown{CBD}=\stackrel\frown{BCE}\)

\(\stackrel\frown{B}=\stackrel\frown{C}\)

BC chung

\(\Rightarrow\)\(\Delta BCD=\Delta CBE\left(ch-gn\right)\)

b) \(\Delta BOC\)\(\stackrel\frown{OBC}=\stackrel\frown{OCB}\)\(\Rightarrow\Delta BOC\)cân tại O \(\Rightarrow OB=OC\)

c) xét \(\Delta AOB\)\(\Delta AOC\)

AO chung

AB=AC

\(\stackrel\frown{ABO}=\stackrel\frown{ACO}\)

\(\Rightarrow\Delta AOB=\Delta AOC\left(ch-gn\right)\)

\(\Rightarrow\stackrel\frown{BAO}=\stackrel\frown{CAO}\Rightarrow\stackrel\frown{OAD}=\stackrel\frown{OAK}\)

\(OH\perp AC\Rightarrow\stackrel\frown{OHA}=90^o\)

\(OK\perp AB\Rightarrow\stackrel\frown{OKA}=90^o\)

Xét \(\Delta OAK\)\(\Delta OAH\)có:

\(\stackrel\frown{OKA}=\stackrel\frown{OHA}=90^o\)

\(\stackrel\frown{OAK}=\stackrel\frown{OAH}\)

OA chung

\(\Rightarrow\Delta OAK=\Delta OAH\left(ch-gn\right)\)

\(\Rightarrow OH=OK\)

nếu sai ở đâu mong bạn bỏ qua cho nhaok

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

a: Xét ΔABD vuông tạiD và ΔACE vuông tại E có

AB=AC

góc BAD chung

Do đo: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đo: ΔOEB=ΔODC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC