Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{b) Ta có: MD vuông góc với BE}\)
\(\text{ BE vuông góc với EN}\)
Xét tam giác MDI và tam giác IEN ta có:
MD=EN(vì tam giác MBD = tam giác CEN)
góc MDI = góc IEN(=90 độ)
góc DMI = góc INE(cmt)
=>tam giác MDI = tam giác IEN(CGV-GN)
=>IM=IN(ctư)
=>đường thẳng BC cắt MN tại trung điểm I của MN
Lại có: N thuộc tia đối AC (GT) nên C thuộc đoạn AN
Ta có: \(\widehat{ACO}+\widehat{NCO}=180^0\) (kề bù)
Từ (1); (2); (3) => \(\widehat{ABO}=\widehat{ACO}=\widehat{OCN}=90^0\)
=> Điểm O cố định vì OB vuông góc với AB tại B và OC vuông góc với AC tại C (hay OB và OC duy nhất)
Vậy: Đường thằng vuông góc MN tại I cắt tại điểm O cố định khi D thay đổi trên BC
P/s: Bạn vô góc học tâp của mình để xem thêm nha, mình có làm bài này cho 1 bạn rồi đó!
a)giải
+)AB < BC => góc B < góc A (1)
+)xét tam giác ABC có;
AB = AC (giả thiết)
=>tam giác ABC cân tại A
=>góc B = góc C (2)
+) xét tam giác ABC có;
góc A+ góc B+ góc C =180* (3)
từ (1) , (2) và (3) => góc A > 60*
Tự vẽ hình nha!
Xét tam giác BMK và tam giác CNK có:
BM=CN (gt)
Góc BKM=góc CKN (hai góc đối đỉnh)
MK=NK (K là trung điểm MN)
=> tam giác BMK=tam giác CNK (c.g.c)
=> BK=CK
=> K là trung điểm BC
=> B,K,C thẳng hàng.