Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này phải vẽ thêm hình.
Trên một nửa mặt phẳng bờ AC ko chứa điểm B, vẽ một góc yAC = góc BAD . Trên tia Ay lấy điểm M sao cho AM = AD.
Xét tam giác ADB và tam giác AMC có :
AB = AC (Vì tam giác ABC cân tại A)
AD = AM
Góc BAD = Góc MAC
=> Tam giác ADB = Tam giác AMC (c.g.c)
=> DB = CM (Hai cạnh tương ứng) (1)
=> Góc ADB = Góc AMC (Hai góc tương ứng)
Mà góc ADB > góc ADC (gt) => AMC > ADC (2)
Nối D với M
Xét tam giác AMD có AD = AM => tam giác AMD cân tại A
=> Góc ADM = Góc AMD (3)
Ta có : Góc ADM + Góc MDC = Góc ADC
=> Góc MDC = Góc ADC - ADM
Góc AMD + Góc DMC = Góc AMC
=> Góc DMC = Góc AMC - Góc AMD
Mà Góc ADC < AMC (theo 2)
Góc ADM = Góc AMD (theo 3)
=> MDC < DMC
=> CM < DC (quan hệ góc cạnh đối diện trong tam giác DMC)
Mà DB= MC (theo 1)
=> DB < DC hay DC > DB
Sửa đề: CMR: DB > DC.
Ta có: AB = AC (\(\Delta ABC\) cân tại A)
AD là cạnh chung.
Giả sử \(\widehat{ADB}=\widehat{ADC}\)
Thì \(\Delta ADB=\Delta ADC\)
Nhưng \(\widehat{ADB}>\widehat{ADC}\left(gt\right)\)
=> \(\Delta ADB>\Delta ADC\)
=> DB > DC.
Giả sử DB không nhỏ hơn DC hay DC nhỏ hơn hoặc bằng DB
+Nếu DC=DB thì tam giác ADB=ADC(cgc)
suy ra ^ADB=^ADC(2 góc tương ứng) trái với gt (1)
+Nếu DC<DB thì ^DBC<^DCB
Mà ^ABD+^DBC=^ACD+^DCB(tam giác ABC cân tại A)
suy ra ^ABD>^ACD (*)
Xét tam giác ABD và ACD có AB=AC(gt),AD chung,DB>DC
suy ra ^BAD>^CAD (**)
Từ (*) và (**) suy ra ^ABD+^BAD>^ACD+^CAD
suy ra^ADB<^ADC trái với gt (2)
Từ (1) và (2) suy ra DC>DB
bạn trần thị hương lan sai rồi
chỉ có hai tam giác bằng nhau chứ không có 2 tam giác lớn hơn nhau đâu
Ta có: AB = AC (ΔABC cân tại A)
AD là cạnh chung.
Giả sử ADBˆ=ADCˆ
Thì ΔADB=ΔADC
Nhưng ADBˆ>ADCˆ(gt)
=> ΔADB>ΔADC
=> DB > DC.
Ta có: AB = AC (ΔABCΔABC cân tại A)
AD là cạnh chung.
Giả sử ADBˆ=ADCˆADB^=ADC^
Thì ΔADB=ΔADCΔADB=ΔADC
Nhưng ADBˆ>ADCˆ(gt)ADB^>ADC^(gt)
=> ΔADB>ΔADCΔADB>ΔADC
=> DB > DC.