\(\Delta ABC\) (\(AB< AC\)) có ba góc nhọn, kẻ đường c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc CBA chung

Do đó: ΔAHB\(\sim\)ΔCAB

Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

b: \(HC=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔHAC có AD là phân giác

nên DH/HA=DC/AC

=>DH/3=DC/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DH}{3}=\dfrac{DC}{5}=\dfrac{DH+DC}{3+5}=\dfrac{8}{8}=1\)

Do đó: DH=3cm; DC=5cm

c: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{BDA}+\widehat{HAD}=90^0\)

mà \(\widehat{CAD}=\widehat{HAD}\)

nên \(\widehat{BAD}=\widehat{BDA}\)

=>ΔBAD cân tại B

mà BK là đường phân giác

nên BK là đường cao

Xét ΔEFA vuông tại F và ΔEHB vuông tại H có

\(\widehat{FEA}=\widehat{HEB}\)

Do đó: ΔEFA\(\sim\)ΔEHB

6 tháng 4 2017

a. xét 2 tam giác vuông AHB và ADH có

góc BAH _ chung

suy ra tam giác AHB đồng dạng với tam giác AHD (g.g)

suy ra AH/AD=AB/AH

suy ra AH2=AB.AD

~mình chỉ piết tới đó thôi nha

b. xét 2 tam giác vuông AED và ABC có

góc A chung

suy ra tam giác AED đồng dạng với tam giác ABC

suy ra AD/AC=AE/AB

suy ra AD.AB= AE.AC

20 tháng 4 2018

hình bạn tự vẽ nhá

a) Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)

=> AH = 9,6 cm

Ta có : AD là phân giác của A^

=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)

=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)

=> 16BD = 240 - 12BD

=> 28BD = 240

=> BD = 8,5 cm

5 tháng 3 2019

hình bạn tự vẽ ak nghen!!!

a)

Xét tam giác ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

23 tháng 4 2018

ai kết bạn với mình. Mình cho một lai

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đo:ΔABC đồng dạng với ΔHBA

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot40=600\left(cm^2\right)\)

DE=AH=24cm

Xét ΔADE vuông tại A và ΔACB vuông tại A có

AD/AC=AE/AB

Do đo: ΔADE đồng dạng với ΔACB

Suy ra: \(\dfrac{S_{ADE}}{S_{ACB}}=\left(\dfrac{DE}{CB}\right)^2=\left(\dfrac{24}{50}\right)^2=\dfrac{144}{625}\)

hay \(S_{ADE}=138.24\left(cm^2\right)\)