Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta{DEF}=\Delta{HIK}\)
\( \Rightarrow \widehat D = \widehat H\)( 2 góc tương ứng )
Mà \(\widehat D =73^0\)
\( \Rightarrow \widehat H=73^0\)
Vì \(\Delta{DEF}=\Delta{HIK}\)
\(\Rightarrow DE = HI;EF = IK;DF = HK\)( các cạnh tương ứng )
Vậy \( \widehat H = {73^o}; HI = 5cm; EF = 7cm\)
1) Số đo góc A bằng C=80
2) 3 cạnh của tam giác vuông là B
3) Kí hiệu đúng là A
4) Vậy AC=4 cm
5) a) Xét tam giác ABD và tam giác AEC có:
<AEC=<ADB=90
<BAD=<EAC (góc chung)
AB=AC (tam giác ABC cân)
Suy ra tam giác BAD=tam giác CAE (cạnh huyền- góc nhọn)
Suy ra BD=EC (vì 2 cạnh tương ứng)
b) Ta có tam giác BAD=tam giác CAE (ở câu a)
Suy ra <ADK=<AEK (vì 2 góc tương ứng)
c) Tam giác GDE ở đâu vậy bạn, bạn xem lại đề rồi mình giải cho
1) C
2) B
3) A
4) D
5) Giải.
a) Tam giác ABC cân tại A => AB = AC
Góc B = góc C
Xét 2 tam giác vuông, EBC và DCB, có:
Góc B = góc C (cmt)
Cạnh BC chung
=> Tam giác EBC = tam giác DCB.
=> BD = CE ( 2 cạnh tương ứng)
Đề câu b,c hơi sai sai bn viết lại đc hk
Ta có hình vẽ:
B A D E C
a) Xét Δ ABD và Δ EBD có:
BA = BE (gt)
ABD = EBD (vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, Δ ABD = Δ EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng) (đpcm)
b) Δ ABD = Δ EBD (câu a) => BAD= BED = 90o (2 góc tương ứng)
M cách đều Ox và Oy nên M nằm trên tia phân giác của góc xOy.
Gọi A là chân đường vuông góc kẻ từ M đến Ox thì tam giác vuông AOM là một nửa tam giác đều.
Do đó, OM = 2MA = 12cm.
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)
Gọi độ dài cạnh góc vuông còn lại là a
Áp dụng định lí Pytago ta có
\(13^2=a^2+12^2\)
\(\Rightarrow169=a^2+144\)
\(\Rightarrow a^2=169-144\)
\(\Rightarrow a^2=25\)
\(\Rightarrow a=5\)
Vậy cạnh góc vuông còn lại dài 5cm
Xét tam giác vuông đó, gọi cạnh góc vuông còn lại cần tìm là: a (a > 0)
=> \(12^2+a^2=13^2\) ( Định lí Py-ta-go )
\(a^2=13^2-12^2\)
\(a^2=25\)
\(=>a^2=5^2\)
\(=>a=5\)
Vậy cạnh góc vuông còn lại của tam giác vuông đó là: 5cm
gọi cạnh góc vuông ta cần tìm là x
áp dụng định lý pitago, ta có
122 + x = 132
suy ra x = 132 - 122=25
suy ra x = 5
vậy cạnh góc vuông còn lại là 5
HI=DE=5cm
EF=IK=7cm
góc D=góc H=73 độ
Vì Tam giác `DEF =` Tam giác `HIK ->`
\(\widehat{D}=\widehat{H}=73^0\)`, DE = HI = 5 cm, EF = IK = 7 cm`
Vậy, số đo \(\widehat{H}=73^0\)`,` độ dài `2` cạnh `HI` và `EF` lần lượt là `5 cm, 7 cm`
`\color{blue}\text {#DuyNam}`