K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9

=>\(4^n\) có chữ số tận cùng là 6

=>\(n=4k+2\left(k\in N\right)\)

Để \(U_n< 10000\) thì \(4^n+3< 10000\)

=>\(4^n< 9997\)

=>\(n< log_49997\simeq6,6\)

mà n nguyên dương và n chia 4 dư 2

nên \(n\in\left\{2;6\right\}\)

=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn

Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7

=>\(6^n\) có chữ số tận cùng là 6

=>\(n\in Z^+\)

\(69000< U_n< 960000\)

=>\(69000< 6^n+1< 960000\)

=>\(68999< 6^n< 959999\)

=>\(log_668999< n< log_6959999\)

=>\(6,22< n< 7,68\)

mà n là số tự nhiên

nên n=7

=>Có 1 số hạng duy nhất thỏa mãn

un=1

=>n^2-10n+9=0

=>(n-1)(n-9)=0

=>n=1 hoặc n=9

=>Chọn B

19 tháng 9 2023

un =1 

=> n^2 -10n+9=0

=>(n=1)(n-9)=0

=>n=1 hoặc n=9

=>chọn B

23 tháng 10 2023

\(u_n=1\)

=>\(n^2-10n+10=1\)

=>\(n^2-10n+9=0\)

=>(n-1)(n-9)=0

=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)

Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1

=>Chọn  B

\(U_n\) có chữ số tận cùng là 7

=>\(5n+2\) có chữ số tận cùng là 7

=>5n có chữ số tận cùng là 5

=>n lẻ

Số lượng số lẻ trong dãy số từ 10;11;...;2023 là:

\(\dfrac{\left(2023-11\right)}{2}+1=1007\left(số\right)\)

=>Trong dãy này có 1007 số hạng có tận cùng là 7

Để \(U_n\) có chữ số tận cùng là 2 thì \(5n+2\) có chữ số tận cùng là 2

=>5n có chữ số tận cùng là 0

=>n chẵn

=>\(U_n=5n⋮10\)

Số lượng số hạng \(U_n\) chia hết cho 10 khi \(960< U_n< 6900\) là:

\(\dfrac{\left(6900-960\right)}{10}+1-2=595-2=593\left(số\right)\)

\(u_n\in Z\Leftrightarrow n+4⋮n+1\)

=>n+1+3 chia hết cho n+1

=>n+1 thuộc Ư(3)

mà n+1>1 với n>0

nên n+1=3

=>n=2

=>Chọn C

19 tháng 9 2023

\(u_n=\dfrac{n+4}{n+1}\in Z\)

\(\Leftrightarrow n+4⋮n+1\)

\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)

\(\Leftrightarrow n+4-n-1⋮n+1\)

\(\Leftrightarrow3⋮n+1\)

\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)

\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)

19 tháng 9 2023

21 số hạng

19 tháng 9 2023

1 số

18 tháng 11 2023

Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)

=>\(n^2+n+2n+2+5⋮n+1\)

=>\(5⋮n+1\)

=>\(n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-2;4;-6\right\}\)

Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên

18 tháng 11 2023

u_n chỉ có 1 số hạng nhận giá trị nguyên.

 

un=1

=>n^2-10n+9=0

=>(n-1)(n-9)=0

=>n=1 hoặc n=9

=>Chọn B