Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
\(u_n\in Z\Leftrightarrow n+4⋮n+1\)
=>n+1+3 chia hết cho n+1
=>n+1 thuộc Ư(3)
mà n+1>1 với n>0
nên n+1=3
=>n=2
=>Chọn C
\(u_n=\dfrac{n+4}{n+1}\in Z\)
\(\Leftrightarrow n+4⋮n+1\)
\(\Leftrightarrow n+4-\left(n+1\right)⋮n+1\)
\(\Leftrightarrow n+4-n-1⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow n+1\in\left\{-2;0;-4;2\right\}\)
\(\Rightarrow\left(u_n\right)\)có 4 số hạng nguyên \(\rightarrow Chọn\) \(D\)
Để \(u_n\) có tận cùng là 7 thì \(6^n+1\) có tận cùng là 7
=>\(6^n\) có chữ số tận cùng là 6
=>\(n\in Z^+\)
\(69000< U_n< 960000\)
=>\(69000< 6^n+1< 960000\)
=>\(68999< 6^n< 959999\)
=>\(log_668999< n< log_6959999\)
=>\(6,22< n< 7,68\)
mà n là số tự nhiên
nên n=7
=>Có 1 số hạng duy nhất thỏa mãn
Để \(U_n\) có chữ số tận cùng là 9 thì \(4^n+3\) có chữ số tận cùng là 9
=>\(4^n\) có chữ số tận cùng là 6
=>\(n=4k+2\left(k\in N\right)\)
Để \(U_n< 10000\) thì \(4^n+3< 10000\)
=>\(4^n< 9997\)
=>\(n< log_49997\simeq6,6\)
mà n nguyên dương và n chia 4 dư 2
nên \(n\in\left\{2;6\right\}\)
=>Có 2 số hạng trong dãy \(\left(U_n\right)\) thỏa mãn
un=1
=>n^2-10n+9=0
=>(n-1)(n-9)=0
=>n=1 hoặc n=9
=>Chọn B
\(u_n=1\)
=>\(n^2-10n+10=1\)
=>\(n^2-10n+9=0\)
=>(n-1)(n-9)=0
=>\(\left[{}\begin{matrix}n-1=0\\n-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=1\\n=9\end{matrix}\right.\)
Vậy: Có 2 giá trị của dãy (Un) cùng bằng 1
=>Chọn B
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
\(\lim\left(\dfrac{2^n+5^n}{5^n}+\dfrac{3^n+8^n}{3^n}\right)=\lim\left[\left(\dfrac{2}{5}\right)^n+1+1+\left(\dfrac{8}{3}\right)^n\right]=2+\infty=+\infty\)
21 số hạng
1 số