Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik chỉ bít rằng 49 là số chính phương vì nó =72.
Mik nghĩ rằng từ đây bạn có thể suy ra các số còn lại .
Học tốt #
A=44...4 88...89 = 44...488..8+1 = 44...4.10^n + 8.11...1 + 1 => Đoạn này bạn cứ hiểu như là 4444=4000+400+40+4=4.10^3+4.10^2+4.10+4 (abcd=a.1000+b.100+c.10+d.1). Vì 44...4 đứng hàng 10^n trong số A nên khi phân giải ra thì 44....4 phải nhân với 10^n
A=...=4.[(10^n-1)/9].10^n+8.[(10^n-1)/9]...
=> Đoạn này hiểu như sau:
10^n=100...000(n số 0),
10^n-1= 100...000-1=999...999(n số 9)
(10^n-1)/9=999...999/9=111...111(n số 1)
Và vì có n số 4 trong A cho nên: 4.[(10^n-1)/9]=444...444(n số 4) sau đó nhân với 10^n là giống như cái trên, do 44...4 đứng ở hàng 10^n
=> Cái vế 888...8 đằng sau cũng tương tự nhé
Thế nhé:> Đoạn dưới bạn hiểu rồi đúng ko:> Chúc thi may mắn nhé:D
a | 0 | 1 | 3 | 6 | 10 | 15 | ... | x | y | ... | |
b | 1 | 2 | 3 (&) | 4 | 5 | 6 | ... | 99 | 100 | ||
c | 1 | 3 (*) | 6 (^) | 10 | 15 | 21 | ... | x | y |
nhận xét:
+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô (ở hàng b)
VD: (*) + (^) = (&)2
nói vậy hiểu ko??
=> x+ y = 100 ^2 =10 000 (1)
+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):
a+b=c <=> a-c=b (+)
áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)
x-y = 100 (2)
Cộng 2 vế (1) và (2), ta có:
2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050
Câu b thì tớ ko biết
a/ Số hạng thứ \(n=\frac{n\left(n+1\right)}{2}\) => số hạng thứ \(n-1=\frac{\left(n-1\right)\left(n-1+1\right)}{2}=\frac{n\left(n-1\right)}{2}\)
Tổng của hai số hạng n-1 và n là
\(\frac{n\left(n-1\right)}{2}+\frac{n\left(n+1\right)}{2}=n^2\) là 1 số chính phương
Hai số hạng liên tiếp của dãy có dạng:
\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)
Tổng của 2 số hạng liên tiếp:
\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)
n+1930, n+2539 là số chính phương
Khi đó sẽ tồn tại số nguyên a, b sao cho:
\(n+1930=a^2,n+2539=b^2\)
Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)
=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)
\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)
Vì a, b nguyên nên a-b và a+b nguyên
Em kẻ bảng làm tiếp nhé
\(4...48..89=4...4.10^n+8...8+1=4.1...1.\left(9...9+1\right)+8.1...1+1=\left(6.1...1\right)^2+12.1...1+1=\left(6...6+1\right)^2=6..67^2\)