K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Mik chỉ bít rằng 49 là số chính phương vì nó =72.

Mik nghĩ rằng từ đây bạn có thể suy ra các số còn lại .

Học tốt #

4 tháng 10 2018

Gà 

\(49=7^2\)

\(4489=67^2\)

\(444889=667^2\)

\(44448889=6667^2\)

\(..............................\)

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 10 2018

\(4...48..89=4...4.10^n+8...8+1=4.1...1.\left(9...9+1\right)+8.1...1+1=\left(6.1...1\right)^2+12.1...1+1=\left(6...6+1\right)^2=6..67^2\)

1 tháng 11 2017

A=44...4 88...89 = 44...488..8+1 = 44...4.10^n + 8.11...1 + 1 => Đoạn này bạn cứ hiểu như là 4444=4000+400+40+4=4.10^3+4.10^2+4.10+4 (abcd=a.1000+b.100+c.10+d.1). Vì 44...4 đứng hàng 10^n trong số A nên khi phân giải ra thì 44....4 phải nhân với 10^n

A=...=4.[(10^n-1)/9].10^n+8.[(10^n-1)/9]...
=> Đoạn này hiểu như sau:
10^n=100...000(n số 0),
10^n-1= 100...000-1=999...999(n số 9)
(10^n-1)/9=999...999/9=111...111(n số 1)
Và vì có n số 4 trong A cho nên: 4.[(10^n-1)/9]=444...444(n số 4) sau đó nhân với 10^n là giống như cái trên, do 44...4 đứng ở hàng 10^n
=> Cái vế 888...8 đằng sau cũng tương tự nhé

Thế nhé:> Đoạn dưới bạn hiểu rồi đúng ko:> Chúc thi may mắn nhé:D

3 tháng 7 2015

Bạn cho nhiều bài quá !

13 tháng 7 2015

6) (n-1)^3 < (n-1)n(n+1) = n(n^2 -1) = n^3-n < n^3

23 tháng 6 2017

a

011015... xy...
b123 (&)456...99100  
c13 (*)6 (^)101521...xy  

nhận xét: 

+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô  (ở hàng b)

      VD: (*) + (^) = (&)

   nói vậy hiểu ko??

=> x+ y = 100 ^2 =10 000   (1)

+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):

a+b=c  <=>  a-c=b  (+)

áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)

x-y = 100   (2) 

Cộng 2 vế  (1) và (2), ta có: 

2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050 

Câu b thì tớ ko biết

là số thứ 100 là 1000

29 tháng 9 2016

a/ Số hạng thứ \(n=\frac{n\left(n+1\right)}{2}\) => số hạng thứ \(n-1=\frac{\left(n-1\right)\left(n-1+1\right)}{2}=\frac{n\left(n-1\right)}{2}\)

Tổng của hai số hạng n-1 và n là

\(\frac{n\left(n-1\right)}{2}+\frac{n\left(n+1\right)}{2}=n^2\) là 1 số chính phương


 

NV
10 tháng 7 2021

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

2 tháng 4 2019

n+1930, n+2539 là số chính phương  

Khi đó sẽ tồn tại số nguyên a, b sao cho:

\(n+1930=a^2,n+2539=b^2\)

Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)

=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)

\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)

Vì a, b nguyên nên a-b và a+b nguyên 

Em kẻ bảng làm tiếp nhé