Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1981 là số hạng thứ : ( 1981 - 1 ) : 2 + 1 = 991
b) số hạng thứ 100 là : 1 + ( 100 - 1 ) . 2 = 199
Tổng là : ( 199 + 1 ) . 100 : 2 = 10000
Ủng hộ mk nha ^-^
a) Nhận thấy:
0,2-0,1=0,1
0,3-0,2=0,1
Dãy số trên cách đều nhau 0,1 đơn vị.
Vậy 5 số hạng tiếp theo của dãy là:
1;1,1;1,2;1,3;1,4.
b) Số hạng thứ 100 của dãy trên là:
0,1+(100-1)x0,1=10
Vậy tổng 100 số hạng đầu tiên của dãy trên là:
(10+0,1)x100:2=505
c) số hạng thứ 2014 của dãy là:
0,1+(2014-1)x0,1=201,4
Cho bốn số tự nhiên có tổng là 489 được sắp xếp theo một thứ tự nhất định. Bạn Nam viết nhiều lần từng nhóm bốn số đó liên tiếp thành một dãy số. Tính tổng của 2017 số hạng đầu tiên của dãy số đó, biết rằng số hạng thứ chín của dãy số này là 125.
Trả lời: Tổng của 2017 số đầu tiên trong dãy số đó là:
A. 245456
B. 246518
C. 246456
( D ) . 246581
Ta gọi 4 số tự nhiên đó là a , b , c , d
Vậy dãy số của Nam viết là abcd,abcd,abcd,...
2017 số đầu tiên trong nhóm là : 2017 : 4 = 504 ( dư 1 )
Vì số hạng thứ chín của dãy số đó là 125 nên ta có tổng của 2017 số hạng đầu tiên của dãy số đó là : 489 x 504 + 125 = 246581
Đ/S : 246581
2; 11; 29; 56; 92;...;
St2 = 2 + 9
St3 = 2 + 9 + 18 = 2 + 9 \(\times\) ( 1 + 2)
St4 = 2 + 9 + 18 + 27 = 2 + 9 \(\times\) (1 + 2 + 3)
St5 = 2 + 9 + 18 + 27 + 36 = 2 + 9 \(\times\)( 1 + 2 + 3 + 4)
..................
Stn = 2 + 9 \(\times\) ( 1 + 2 + 3 + ...+ n-1)
Stn = 2 + 9 \(\times\) (n-1+1)\(\times\)(n-1):2
Stn = 2 + 9 \(\times\) (n-1)\(\times\)n : 2
Số thứ 100 tức n = 100. Thay n = 100 vào biểu thức
Stn = 2 + 9 \(\times\) (n-1) \(\times\) n : 2 ta có:
Stn = 2 + 9 \(\times\) (100 - 1) \(\times\) 100 : 2 = 44552
b, St1 = 2
St2 = 2 + 9 \(\times\) 1 \(\times\) 2 : 2
St3 = 2 + 9 \(\times\) 2 \(\times\) 3 : 2
St4 = 2 + 9 \(\times\) 3 \(\times\) 4 : 2
......................................
St10 = 2 + 9 \(\times\) 9 \(\times\) 10 : 2
Cộng vế với vế ta được:
St1+St2+...+St10 = 2 \(\times\)10 + \(\dfrac{9}{2}\) \(\times\)( 1\(\times\)2 + 2 \(\times\)3 +...+9\(\times\)10)
Đặt : A = 1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+ 9 \(\times\)10
3 A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)3 +...+ 9\(\times\)10\(\times\)3
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)(5-2) +...+ 9\(\times\)10\(\times\)(11-8)
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)5 - 3\(\times\)4\(\times\)2 +...+ 9\(\times\)10\(\times\)11-9\(\times\)10\(\times\)8
3A = 9\(\times\)10\(\times\)11 ⇒ A = 9\(\times\)10\(\times\)11 : 3 = 330
S = 20 + \(\dfrac{9}{2}\) \(\times\) 330 = 1505
a, 3 số tiếp theo của dãy là: 19, 21, 23
b, Số cuối là:
1 + ( 100 - 1 ) x = 199
Tổng của 100 số đầu tiên của dãy là:
( 199 + 1 ) x 100 : 2 = 10000