Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E I
a) Xét \(\Delta ADB,\Delta AEC\) có :
\(\widehat{ADB}=\widehat{AEC}\left(=90^o\right)\)
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{A}:chung\)
=> \(\Delta ADB=\Delta AEC\) (cạnh huyền - góc nhọn)
=> AD = AE (2 cạnh tương ứng)
b) Xét \(\Delta ADE\) có :
AD = AE (cm câu a)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{AED}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^o-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị.
=> \(DE//BC\)
c) Xét \(\Delta AEI,\Delta ADI\) có :
AE = AD (\(\Delta AED\) cân tại A)
\(\widehat{AEI}=\widehat{ADI}\left(=90^o\right)\)
\(AI:Chung\)
=> \(\Delta AEI=\Delta ADI\left(c.g.c\right)\)
=> \(\widehat{EAI}=\widehat{DAI}\) (2 góc tương ứng)
=> AI là tia phân giác của góc A (3)
Xét \(\Delta ABM,\Delta ACM\) có :
AB = AC (tam giác ABC cân tại A)
\(AM:chung\)
BM = CM (M là trung điểm của BC)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> \(AM\) là tia phân giác của góc A (4)
Từ (3) và (4) => \(AI\equiv AM\)
=> A, I, M thẳng hàng.
Tự vẽ hình
a, Do tam giác ABC cân tại A ( gt )
=> AB = AC ; ABC = ACB ( tính chất tam giác cân)
Xét tam giác ABD và tam giác ACE có :
Góc BAC chung
AB = AC ( cmt )
ADB = AEC ( = 90 độ )
=> Tam giác ABD = ACE ( cạnh huyền - góc nhọn )
=> ABD = ACE ( 2 góc tương ứng )
AD = AE ( 2 cạnh tương ứng )
=> Tam giác ADE cân tại A ( định nghĩa tam giác cân )
=> ADE = AED ( tính chất tam giác cân )
Trong tam giác ABC có : ABC + ACB + BAC = 180 độ ( Tổng 3 góc của 1 tam giác )
Trong tam giác AED có : AED + ADE + BAC = 180 độ ( tổng 3 góc của 1 tam giác )
=> ABC + ACB = AED + ADE
Mà ABC = ACB ; AED = ADE ( cmt )
=> 2.ABC = 2.AED => ABC = AED
Mà 2 góc này ở vị trí đồng vị => DE // BC ( Dấu hiệu nhận biết 2 đường thẳng song song )
Vậy DE // BC
b, Ta có : AE + BE = AB
AD + CD = AC
Mà AE = AD ; AB = AC ( cmt ) => BE = CD
Xét tam giác EOB và tam giác DOC có :
BDC = CEB ( = 90 độ )
BE = CD ( cmt )
ABD = ACE ( cmt )
=> tam giác EOB = DOC ( g.c.g )
=> OE = OD ( 2 cạnh tương ứng )
Vậy tam giác EOB = DOC
c, Ta có : AE = AD ( cmt ) => A nằm trên đường trung trực của đoạn thẳng DE
OE = OD ( cmt ) => O nằm trên đường trung trực của đoạn thẳng DE
=> AO là trung trực của đoạn thẳng DE
Vậy AO là trung trực của đoạn thẳng DE
d, Vì AO là trung trực của đoạn thẳng DE ( cmt )
=> AO // DE ( t/c đường trung trực )
Mà DE // BC ( cmt ) => AO vuông góc với BC ( từ vuông góc đến song song )
Xét tam giác ABC cân tại A có AH là đường trung tuyến
=> AH đồng thời là đường cao ứng với cạnh BC ( t/c tam giác cân )
=> AH vuông góc với BC
=> AH và AO trùng nhau => A,H,O thẳng hàng ( đpcm )
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
A B C E F D M N
a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:
\(EC=BD\left(gt\right)\)
\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)
\(BC-chung\)
\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)
b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)
\(\implies EB=CD\)(1)
Có: AB=CD(gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)
Từ (1) và (2) \(\implies CD=CF\)
Có: AB=CD(gt)
\(\implies \bigtriangleup ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)
Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\) có:
\(EB=FC(cmt)\)
\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)
\(BC-chung\)
\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)
\(\implies BF=CE\)(2 cạnh tương ứng)
c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)
\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)
Gọi FD giao BC tại N
Xét \(\Delta FCN\) và \(\Delta DCN\) có;
\(CF=CD\)(câu b)
\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)
\(CN-chung\)
\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)
\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)
Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)
d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:
\(EC=BD\left(gt\right)\)
\(\widehat{ECM}=\widehat{MBD}\)
\(MB=MC\)(vì M-trung điểm BC)
\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)
Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)
\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)
\(\Rightarrow EM\equiv MD\)
\(\implies E;M;D\) thẳng hàng
_Học tốt_
d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )
=> tứ giác BECD là hình bình hành
=> ED giao BC tại trung điểm mỗi đường
Mà M là trung điểm của BC nên M là trung điểm của ED
=> M, E, D thẳng hàng ( đpcm )
a/ Xét 2 t/g vuông ABD và ACE có:
AB = AC (gt)
\(\widehat{A}:chung\)
=> t/g ABD = t/g ACE (cạnh huyền - góc nhọn)
=> BD = CE (đpcm)
b/ Vì AB = AC(gt) => t/g ABC cân
=> \(\widehat{EBC}=\widehat{DCB}\)
Xét 2 t/g vuông: t/g BDC và t/g CEB có:
BC: Cạnh chung
\(\widehat{DCB}=\widehat{EBC}\)
=> t/g BDC = t/g CEB (cạnh góc vuông - góc nhọn kề)
=> DC = EB
Xét 2 t/g vuông: t/g OEB và t/g ODC có:
EB = DC (cmt)
\(\widehat{EBD}=\widehat{DCE}\) (2 góc tương ứng do t/g ABD = t/g ACE)
=> t/g OEB = t/g ODC (cạnh góc vuông - góc nhọn kề)
=> OE = OD và OB = OC
=> đpcm
c/ Ta có: \(\widehat{AOD}+\widehat{DOI}=180^o\) (kề bù)
=> A, O, I thẳng hàng (đpcm)
Xét t/g AIB và t/g AIC có:
AI: Cạnh chung
AB = AC (gt)
IB = IB (gt)
=> t/g AIB = t/g AIC (c.c.c)
=> \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
mà \(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)
=> \(\widehat{AIB}=\widehat{AIC}=90^o\)
=> \(AI\perp BC\)
mà A,O, I thẳng hàng (cmt)
=> \(AO\perp BC\left(đpcm\right)\)
a) Vì tam giác ABC cân tại A
=> AB=AC
Vì BD \(\perp\)AC => Tam giác ABD vuông tại D
CE \(\perp\)AB => Tam giác AEC vuông tại E
Xét tg ABD vuông tại D và tg AEC vuông tại E có:
AB=AC (cmt)
\(\widehat{A}\)chung
=> tg ABD = tg AEC (cạnh huyền-góc nhọn)
=> AD=AE(2 cạnh tương ứng)
Vậy AD=AE