Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHMB và ΔKMC có
HM=KM(gt)
\(\widehat{HMB}=\widehat{KMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔHMB=ΔKMC(c-g-c)
Suy ra: \(\widehat{BHM}=\widehat{CKM}\)(hai góc tương ứng)
mà \(\widehat{BHM}=90^0\)(gt)
nên \(\widehat{CKM}=90^0\)
hay CK⊥HM(đpcm)
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
a: BC=căn 6^2+8^2=10cm
b: Xét ΔMHC và ΔMKB có
MH=MK
góc HMC=góc KMB
MC=MB
=>ΔMHC=ΔMKB
c: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>MH là phân giác của góc CMA
d:
Xét ΔCAB có
M là trung điểm của CB
MH//AB
=>H là trung điểm của AC
Xét ΔCAB có
AM,BH là trung tuyến
AM cắt BH tại G
=>G là trọng tâm
=>C,G,I thẳng hàng