K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=căn 6^2+8^2=10cm

BD/CD=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm; CD=40/7cm

b: CD/BC=4/7

Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=16/49

=>S CED=16/49*1/2*6*8=384/49cm2

a:BC=căn 6^2+8^2=10cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC

=>BD/DC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49

 

a) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)

Vậy: BD=3cm; CD=4cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

17 tháng 10 2021

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=62+82=100⇔BC2=62+82=100

hay BC=10(cm)

Vậy: BC=10cm

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>DE/8=3/7

hay DE=24/7(cm)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)

7 tháng 5 2017

a)   BD=45/7        CD=60/7       DE36/7

b)    ADB=162/7     BCD k có vì 3 điểm này thẳng hàng

7 tháng 5 2017

Thanks.

20 tháng 3 2022

e tham khảo câu a

undefined