K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2022

A B C D E G M N

a. Theo bài ra ta có  DE và MN lần lượt là đường trung bình của tam giác ABC và GBC.

Suy ra: DE // BC; DE = 1/2 BC; MN // BC; MN = 1/2 BC

⇒ MN = DE và MN // DE.

b. Tương tự câu a ta cũng có Em và DN lần lượt là đường trung bình của tam giác BGA và tâm giác CGA. => ĐPCM

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

26 tháng 7 2017

A B C D E G F I K

a. Xét \(\Delta ABC\)

Ta có \(\hept{\begin{cases}AE=EB\\AD=DC\end{cases}\Rightarrow DE}\)là đường trung bình của tam giác ABC 

\(\Rightarrow\)DE song song BC và \(DE=\frac{1}{2}BC\left(1\right)\)

Xét \(\Delta BGC\)có \(\hept{\begin{cases}BI=IG\\CK=KG\end{cases}\Rightarrow IK}\)là đường trung bình của tam giác BGC 

\(\Rightarrow\)IK song song BC và \(IK=\frac{1}{2}BC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow DE\)song song \(IK\)và \(DE=IK\)

b. Theo tính chất của trọng tâm ta có

\(GF=\frac{1}{3}AF\);\(AG=\frac{2}{3}AF\left(3\right)\)

Xét \(\Delta ABG\)có IE là đường trung bình suy ra \(IE=\frac{1}{2}AG\left(4\right)\)

Từ (3) và (4) \(\Rightarrow IE=\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AF=\frac{1}{3}AF=GF\)

Vậy \(IE=GF\)

  

26 tháng 10 2022

Cho tam giác abc có hai đường trung tuyến BDvà CEcắt nhau tại G gọi I,K theo thứ tự là trung điểm của GB và GC chứng minh rằng DE song song với IK và DE bằng IK Tam giác DEK bằng tam giác IKE

7 tháng 7 2017

ABCDEGHK

Ta có \(\hept{\begin{cases}GH=GD=\frac{1}{3}BD\\GE=GK=\frac{1}{3}CE\end{cases}}\)(theo tính chất của trọng tâm )

\(\Rightarrow HEDK\)là hình bình hành

a. \(\Rightarrow\)ED song song HK  , ED=HK

B.\(\Rightarrow\)EH song song DK , EH=DK

a: Xét ΔABC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có

M là trung điểm của GB

N là trung điểm của GC

Do đó: MN là đường trung bình của ΔGBC

Suy ra:MN//BC và \(MN=\dfrac{BC}{2}\)(2)

Từ (1) và (2) suy ra DE//MN và DE=MN

b:Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔEBC=ΔDCB

Suy ra: \(\widehat{ECB}=\widehat{DBC}\)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)

nên ΔGBC cân tại G

Suy ra: GB=GC

Suy ra: G nằm trên đường trung trực của BC(3)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC

Xét ΔABC có 

D là trung điểm của AB(gt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔGBC có

I là trung điểm của GB(gt)

K là trung điểm của GC(gt)

Do đó: IK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra DE//IK và DE=IK

11 tháng 7 2021

XIN HÌNH 

 

9 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABC, ta có:

E là trung điểm của AB (gt)

D là trung điểm của AC (gt)

Nên ED là đường trung bình của  ∆ ABC

⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)

* Trong ∆ GBC, ta có:

I là trung điểm của BG (gt)

K là trúng điểm của CG (gt)

Nên IK là đường trung bình của  ∆ GBC

⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)

Từ (l) và (2) suy ra: IK // DE, IK = DE.

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra IK//ED và IK=ED