K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

A B C D E M N I

Haizzz học lâu quá nên quên hết rồi ! sorry

6 tháng 7 2018

tích đúng mình làm cho

3 tháng 9 2023

 

Được rồi, cách giải của bạn cũng đúng.

a. Chứng minh IK // DE và IK = DE

Gọi F là trung điểm của BC. Khi đó, theo tính chất trung tuyến, ta có: BF = FC = 1/2 BC và BD = 2/3 BG, CE = 2/3 CG. Do I và K là trung điểm của BG và CG nên BI = 1/2 BG, CK = 1/2 CG. Từ đó suy ra: BI = BD - DI = 2/3 BG - DI và CK = CE - EK = 2/3 CG - EK. Do DE // BC nên theo định lí Thales, ta có: DI / BI = EK / CK. Thay các giá trị đã tính được vào, ta được: DI / (2/3 BG - DI) = EK / (2/3 CG - EK). Rút gọn biểu thức trên, ta được: 3DI (BG - CG) = 3EK (BG - CG). Do BG - CG = BF - FC = 0 nên biểu thức trên luôn đúng với mọi DI và EK. Vậy IK // DE và IK = DE.

b. Chứng minh các tính chất yêu cầu

Do IK // DE nên theo định lí Thales, ta có: IM / IA = KN / AC. Do IA = AC nên IM = KN. Do PG // BC nên theo định lí Thales, ta có: PG / PA = GQ / QC. Do PA = QC nên PG = GQ. Do DE // BC nên theo định lí Thales, ta có: DE / BC = MI / MB. Do MB = 2MB’ với B’ là trung điểm của BC nên DE / (2MB’) = MI / MB. Nhân hai vế với 2, ta được: DE / MB’ = 2MI / MB. Do MB’ = MB nên DE = 3MI.

27 tháng 7 2018

A B C D E G M N

BD, CE là đường trung tuyến tam giác ABC

=>  AE = BE;  AD = CD

=>  ED là đường trung tuyến tam giác ABC

=>  ED // BC;  ED = 1/2 BC    (1)

M là trung điểm BG  =>  MG = MB

N là trung điểm CG   =>  NG = NC

suy ra:  MN là đường trung bình tam giác GBC

=>  MN // BC;   MN = 1/2 BC  (2)

Từ (1) và (2) =>  MN // ED   ;     MN = ED

suy ra: tứ giác MNDE là hình bình hành

=>  đpcm

14 tháng 9 2019

Xét tam giác BGC có : \(BM=MG\) 

Có : \(CN=NG\left(gt\right)\) 

\(\Rightarrow MN\) là đường trung bình tam giác \(BGC\) 

\(\Rightarrow MN//BC\)  và \(MN=\frac{1}{2}BC\left(1\right)\)

Xét tam giác \(ABC\) có : \(AD=DC\) ( \(BD\) là đường trung tuyến )

\(AE=EB\) ( \(CE\) là đường trung tuyến ) 

\(\Rightarrow ED\) là đường trung bình tam giác \(ABC\) 

\(\Rightarrow ED//BC\) và \(ED=\frac{1}{2}BC\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow ED//MN\) và \(ED=MN\)

Xét tam giác \(BGA\) có : \(BM=MG\) và \(BE=EA\)

\(\Rightarrow ME\) là đường trung bình tam giác \(BGA\)

\(\Rightarrow ME//GA\) và \(ME=\frac{1}{2}GA\left(3\right)\)

Xét tam giác \(CGA\) có : \(CN=NG\) và \(CD=DA\)

\(\Rightarrow DN\) là đường trung bình của tam giác \(CGA\)

\(\Rightarrow DN//GA\) và \(DN=\frac{1}{2}GA\left(4\right)\)

Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow ME//DN\) và \(ME=DN\)

Vậy tứ giác \(MNDE\) có các cặp cạnh đối song song và bằng nhau.