Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H
ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé
Gọi I là giao điểm của DE và AH.
Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)
Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)
Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.
Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé
Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)
Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)
Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN
Câu 3. Sử dụng tỉ số đồng dạng hợp lí rồi suy ra kết quả
Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)
Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)
Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)
Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)
Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)
a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Bài 1:
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC đồg dạg với ΔHBA
c: Xét ΔaBC vuông tại A có AHlà đường cao
nên \(AB^2=BH\cdot BC\)
=>BH=36/10=3,6(cm)
=>CH=6,4cm
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ só bằng nhau ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm
a) Xét\(\Delta\) ADB và \(\Delta\)ACE có:
Góc A chung
Góc D = Góc E (=900)
\(\Rightarrow\)\(\Delta\)ADN \(\infty\) \(\Delta\)ACE ( g.g )
b) Xét \(\Delta\)HEB và \(\Delta\)HDC có:
Góc ABD = Góc ACE ( CM ý a)
Góc E = Góc D ( =900)
\(\Rightarrow\)\(\Delta\)HEB\(\infty\) \(\Delta\)HDC ( g.g )
\(\Rightarrow\) \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\) \(\Rightarrow\) HE.HC = HB.HD
c) Xét AFC và IFC có:
Góc C chung
Góc F = Góc I ( = 900 )
\(\Rightarrow\Delta AFC\infty\Delta FIC\left(g.g\right)\)
\(\Rightarrow\dfrac{AF}{IF}=\dfrac{FC}{IC}\Rightarrow\dfrac{AF}{FC}=\dfrac{IF}{IC}\)
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc BAM=góc CAN
Do đó: ΔAMB đồng dạng với ΔANC
b: BH/CK=BD/CD
nên BH/CK=BA/CA
=>HK//BC
∠ nghĩa là j thế , xl hơi ngu:<
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
DO đó: ΔADB∼ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó: ΔADE∼ΔABC
b: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔHEB\(\sim\)ΔHDC
Suy ra: HE/HD=HB/HC
hay \(HE\cdot HC=HB\cdot HD\)