\(\ne\) AC); AD là phân giác góc A(D \(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).a. C... - H

ctv thảo (giỏi toán của chta bên h :v) đã làm rồi. bạn nào cần thì click vào đường link xanh bên trên nhé 

2 tháng 2 2021

Gọi I là giao điểm của DE và AH.

Câu a) Ta dễ dàng chứng minh được ADHE là hình chữ nhật, sử dụng tính chất hình chữ nhật để suy ra \(\widehat{ADE}=\widehat{DAH}\)

Mà \(\widehat{DAH}=\widehat{C}\) (cùng phụ với góc ABC) nên suy ra \(\widehat{ADE}=\widehat{C}\)

Từ đó dễ dàng chứng minh được tam giác AED đồng dạng với tam giác ABC theo trường hợp góc - góc.

Câu b) Chắc là phải sử dụng lớp 9 sẽ nhanh hơn. Các bạn thử tìm thêm cách khác nhé

Chứng minh tứ giác ABNM nội tiếp suy ra \(\widehat{ANB}=\widehat{AMB}\)

Dễ dàng chứng minh được \(\widehat{AMB}=\widehat{ABC}=\widehat{AED}\)

Suy ra: \(\widehat{ANB}=\widehat{AED}\)và hai góc này ở vị trí đồng vị, suy ra: DE //BN

Câu 3. Sử dụng tỉ số  đồng dạng hợp lí rồi suy ra kết quả

Ta dễ dàng chứng minh được: \(\Delta BDH\)\(\Delta BAC\).và tính được \(BD=\frac{DH.AB}{AC}\)

Chứng minh được: \(\Delta CEH\)\(\Delta CAB\).và tính được \(CE=\frac{EH.AC}{AB}\)

Chứng minh được: \(\Delta DHE\)\(\Delta BAC\).và suy ra được \(\frac{DH}{EH}=\frac{AB}{AC}\)

Suy ra: \(\frac{BD}{CE}=\frac{DH.AB}{AC}:\frac{EH.AC}{AB}=\frac{AB^2.DH}{AC^2.EH}=\frac{AB^2.AB}{AC^2.AC}\)

Vậy \(\frac{BD}{CE}=\frac{AB^3}{AC^3}\)

24 tháng 8 2017

a, Ta có: ^A + ^B + ^C = 180 ( tổng ba góc trong 1 tam giác)

mà theo gt ^A=90, ^C=30 => ^B = 60

Lại có tam giác ABD cân tại B ( BD=BA theo gt) và ^B = 60 ( theo trên)

=> tam giác ABD đều ( e tự giải thik)

vì tam giác ABD đều => ^BAD=60 => ^DAC=90-60=30

b, vì ^DAC = ^ DCA (=30)

=> tam giác DAC cân tại D(*)

=> AD=DC (1)

vì tam giác ADC cân tại D mà DE là cao ứn vs cạnh AC => DE đồng thời là đường trung tuyến ứng vs cạnh AC => AE = EC(2)

Xét tam giác ADE và tam giác CDE có:

AD=DC( theo 1)

AE=EC (theo 2)

DE chung

=> tam giác ADE= tam giác CDE (c.c.c)

c, vì tam giác ABD đều => AB=BD=AD=5cm

mà tam giác ADC cân tại D ( theo *)=> AD=DC=5cm

=> BC= BD + DC= 5+5=10cm

áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:

BC2=AB2+AC2

=> AC2= BC2-AB2

hay AC2= 102-52=75

=> AC \(\sqrt{75}\)\(\approx\)8.66

d, TỰ LÀM

12 tháng 8 2018

ko co hinh a

1 tháng 5 2018

hình bn tự vẽ nha

Vì BO là đường phân giác góc B nên:     AO/OD = AB/BD    =>       AO = OD.AB/BD      (1)

tam giác BOD đồng dạng với BEA (g.g)

=> OD/AE = BD/AB                 =>            AE = OD.AB/BD           (2)

Từ (1) và (2) =>  AO = AE