Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/Xét ∆ABD và ∆ACE có:
chung
∆ABD ∽ ∆ACE (g.g)
b.
Xét ∆HDC và ∆HEB có:
(vì BD AC, CE AB)
(đ đ)
∆HDC ∽ ∆HEB(g.g)
\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)
c.Vì H là giao điểm của 2 đường cao CE,BDH là trực tâm của ∆ABC
AH BC tại F
Xét ∆CIF và ∆CFA có:
: chung
(vì AF BC, FI AC)
∆CIF ∽ ∆CFA (g.g)
Bạn tự vẽ hình nha
a) Xét \(\Delta EDC\)và \(\Delta BAC\)
có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\)chung
nên \(\Delta EDC\)\(\Delta BAC\)(g - g)
\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)
Xét \(\Delta BEC\)và \(\Delta ADC\)
có \(\frac{EC}{CD}=\frac{BC}{AC}\)
\(\widehat{ACB}\)chung
nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)
Xét \(\Delta AHD\)
ta có AH = HD suy ra \(\Delta AHD\)cân tại H
mà \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H
suy ra \(\widehat{ADH}=45^0\)
Gọi giao điểm của AD và BE là O
Xét \(\Delta AOE,\Delta BOD\)
có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))
\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)
nên \(\Delta AOE\)\(\Delta BOD\)(g - g)
\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)
Xét \(\Delta ABE\)vuông tại A
có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A
suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)
b) Gọi giao điểm của AH và BE là I
dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)
có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)
\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)
Xét \(\Delta BHM\)và \(\Delta BEC\)
có \(\frac{BH}{BE}=\frac{BM}{BC}\)
\(\widehat{EBC}\)chung
nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)
\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)
mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))
\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)
dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)
\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)
c) có AK là phân giác \(\Delta ABC\)
nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)
dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)
\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)
từ (1) và (2) suy ra
\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
A B C 5 5 6 M N
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm