\(\widehat{ABC}=50^0\); \(\widehat{BAC}=70^0\). P...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)

Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)

Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)

Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)

Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)

\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)

Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)

Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)

HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.

Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)

b. 

24 tháng 5 2017

cau b;ve diem K sao cho BC la trung truc cua MK sau do CM AK=AC bg phan chung

23 tháng 5 2017

xem câu hỏi tương tự nha pn......!

5 tháng 7 2019

A C B E D F F' G K L H

Trên cạnh BA của \(\Delta\)ABC lấy điểm G sao cho BG = BC. Ta có:

^CFB = 1800 - ^BCF - ^CBF = 1800 - ^BCE - ^CBE = 700 => ^CFB = ^BCF (=700)

=> \(\Delta\)CBF cân tại B => BF = BC = BG => \(\Delta\)GBF cân tại B => ^BGF = (1800 - ^GBF)/2 = 800

=> ^FGA = 1000. Gọi GF cắt AC tại L. Trên đoạn GL lấy điểm F' sao cho ^CAF' = 100

Qua F' dựng đường thẳng song song với AB, đường thẳng này cắt AC tại H

Trên nửa mặt phẳng bờ AB có chứa điểm C, dựng \(\Delta\)GAK đều

Xét \(\Delta\)ALG: ^LGA = 1000 (cmt), ^LAG = 400 => \(\Delta\)ALG cân tại G => \(\Delta\)LF'H cân tại F' (F'H // AG)

Xét \(\Delta\)CLG: ^GCL = ^ACB - ^BCG = 200, ^CLG = 1800 - ^GLA = 1400 => \(\Delta\)CLG cân tại L

Có ^GAF' = ^BAC - ^CAF' = 300 = ^GAK/2 => ^GAF' = ^KAF'. Từ đây dễ có \(\Delta\)F'GA = \(\Delta\)F'KA (c.g.c)
=> F'G = F'K => \(\Delta\)GF'K cân tại F'. Do ^F'GK = ^F'GA - ^KGA = 400 nên ^GF'K = 1000

Suy ra ^GF'K = ^HF'L (= ^AGL = 1000) => ^GF'H = ^KF'L (= 1000 - ^KF'H)

Kết hợp với F'H = F'L; F'G = F'K (cmt) suy ra \(\Delta\)HF'G = \(\Delta\)LF'K (c.g.c) => ^F'LK = ^F'HG

Dễ dàng tính được ^F'LK = ^GLK = (1800 - 400)/2 = 700 => ^F'HG = 700 => ^HGA = 700 (Vì F'H // AG)

Ta thấy \(\Delta\)AGH có ^GAH = 400 , ^HGA = 700 => \(\Delta\)AGH cân tại A

Từ đó AH = AG = GL = CL (Vì các tam giác AGL, CLG cân). Dễ dàng chứng minh:

\(\Delta\)CLF' = \(\Delta\)AHF' (c.g.c) (F'L = F'H, ^F'LC = ^F'HA, CL = AH) => ^LCF' = ^HAF' = ^CAF' = 100

=> ^BCF' = 700 = ^BCE => CF' trùng CE. Ban đầu ta nhận thấy CE cắt GL tại F

Mà CF' trùng CE, F' thuộc GL nên F' trùng F. Tức là ^CAF = ^CAF' = 100 => ^CAF + ACB = 900

Vậy thì AF vuông góc với BC (đpcm).