Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMC=1/2*180=90 độ
=>góc DMC=90 độ
góc CNB=1/2*180=90 độ
=>góc DNC=90 độ
Kẻ tiếp tuyến Cx của hai đường tròn đường kính AC,CB, Cx cắt MN tại I
Xét (E) có
IC,IM là tiếp tuyến
=>IC=IM
Xét (F) có
IN,IC là tiếp tuyến
=>IN=IC=IM
Xét ΔMCN có
CI là trung tuyến
CI=MN/2
=>ΔMCN vuông tại C
góc DMC=góc DNC=góc MCN=90 độ
=>DMCN là hcn
b: ΔDCA vuông tại C có CM vừa là đường cao
nên DM*DA=DC^2
ΔDCB vuông tại C có CN là đường cao
nên DN*DB=DC^2=DM*DA
a: góc AHB=90 độ
=>H nằm trên đường tròn đường kính AB
góc AHC=90 độ
=>H nằm trên đường tròn đường kính AC
b: góc IHA=góc IBM
góc KHA=góc KCN
góc AMB=góc ANC-90 độ
=>góc IHK=góc IBM+góc KCN
=góc MBA+góc NCA
=180 độ-góc MAB-góc NAC
=90 độ
=>góc IHK+góc IAK=180 độ
=>A,H,I,K nội tiếp
c: góc HAK=góc HIK
góc IAH+góc HAK=90 độ
góc IAH=góc BMI
=>góc HIK=góc AMI
=>IK//MN
a) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow AC\bot BC\)
mà \(ON\bot BC\) (N là điểm chính giữa cung BC)
\(\Rightarrow CK\parallel EN\) mà \(NK\bot KC\Rightarrow NK\bot EN\)
\(\Rightarrow\angle KCE=\angle KNE=\angle CEN=90\Rightarrow ECKN\) là hình chữ nhật
\(\angle KNO=90\Rightarrow KN\) là tiếp tuyến
b) ECKN là hình chữ nhật \(\Rightarrow ECKN\) cũng nội tiếp
\(\Rightarrow\angle KEN=\angle KCN=\angle CNE\) \((KC\parallel NE)\)
Vì \(AC\parallel ND\) mà ACND nội tiếp \(\Rightarrow ACND\) là hình thang cân
\(\Rightarrow\angle CNE=\angle ADN\Rightarrow\angle KEN=\angle ADN\) \(\Rightarrow KE \parallel AD\)
mà \(KA\parallel ED\) \(\Rightarrow KEDA\) là hình bình hành
c) Vì \(\left\{{}\begin{matrix}MO\bot AC\\NK\bot AC\end{matrix}\right.\) \(\Rightarrow MO\parallel NK\) \(\Rightarrow\dfrac{NI}{IM}=\dfrac{NK}{MO}\Rightarrow\dfrac{NI}{NK}=\dfrac{MI}{MO}=\dfrac{MI}{R}\)
Vì M,N lần lượt là điểm chính giữa cung AC,BC \(\Rightarrow\angle MON=90\)
\(\Rightarrow MN=\sqrt{OM^2+ON^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Ta có: \(\dfrac{NI}{NK}+\dfrac{NI}{NO}=\dfrac{MI}{R}+\dfrac{NI}{R}=\dfrac{MI+NI}{R}=\dfrac{MN}{R}=\dfrac{\sqrt{2}R}{R}=\sqrt{2}\)
\(\Rightarrow NI\left(\dfrac{1}{NK}+\dfrac{1}{NO}\right)=\sqrt{2}\Rightarrow\dfrac{\sqrt{2}}{NI}=\dfrac{1}{NK}+\dfrac{1}{NO}\)