K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

CE là đường trung tuyến

AD là đường trung tuyến

CE cắt AD tại G

Do đó; G là trọng tâm

=>AG=2GD

=>GD=1/2GM

hay D là trung điểm của GM

=>DG=DM

Xét ΔBDM và ΔCDG có

BD=CD

góc BDM=góc CDG

DM=DG

Do đóΔBDM=ΔCDG

b: BM=CG

mà CG=2/3CE

nên BM=2/3CE

17 tháng 7 2020

A B C D E G M

A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow AG=2GD\)

MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )

\(\Rightarrow GM=2GD\)

NÊN D LÀ TRUNG ĐIỂM CỦA  GM

\(\Rightarrow GD=DM\left(ĐPCM\right)\)

XÉT \(\Delta BDM\)\(\Delta CDG\)

\(BD=CD\left(GT\right)\)

\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)

\(GD=DM\left(CMT\right)\)

=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)

B)

VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow CG=\frac{2}{3}CE\)

THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)

MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)

=>\(BM=CG=4\left(CM\right)\)

C) 

TA CÓ

 \(AB< DB+DA\)

\(AC< DC+DA\)

CỘnG VẾ THEO VẾ

\(\Rightarrow AB+AC< 2AD+DB+DC\)

GIẢI TIẾP LÀ RA

cái chỗ giải tiếp là ra bạn giải tiếp cho mk ik

mk ko làm đc

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0