K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

A B C D E G M

A)VÌ AD LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow AG=2GD\)

MÀ \(AG=GM\)( G LÀ TRUNG ĐIỂM CỦA AM )

\(\Rightarrow GM=2GD\)

NÊN D LÀ TRUNG ĐIỂM CỦA  GM

\(\Rightarrow GD=DM\left(ĐPCM\right)\)

XÉT \(\Delta BDM\)\(\Delta CDG\)

\(BD=CD\left(GT\right)\)

\(\widehat{BDM}=\widehat{CDG}\)( ĐỐI ĐỈNH)

\(GD=DM\left(CMT\right)\)

=>\(\Delta BDM\)=\(\Delta CDG\)( C-G-C)

B)

VÌ CE LÀ TRUNG TUYẾN CỦA \(\Delta ABC\)

MÀ G LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

\(\Rightarrow CG=\frac{2}{3}CE\)

THAY\(CG=\frac{2}{3}.6=4\left(CM\right)\)

MÀ \(\Delta BDM\)=\(\Delta CDG\)( CMT)

=>\(BM=CG=4\left(CM\right)\)

C) 

TA CÓ

 \(AB< DB+DA\)

\(AC< DC+DA\)

CỘnG VẾ THEO VẾ

\(\Rightarrow AB+AC< 2AD+DB+DC\)

GIẢI TIẾP LÀ RA

cái chỗ giải tiếp là ra bạn giải tiếp cho mk ik

mk ko làm đc

30 tháng 5 2021

a) Xét △ABC vuông tại A có :

          AB2+AC2=BC2(định lý py-ta-go)

⇒       AC2=BC2-AB2

⇒       AC2=102-62

⇒       AC2=100-36

⇒       AC2=64

⇒       AC=8

            Vậy AC=8cm

b)

Xét △ABC và △ADC có :

    AC chung

    AB=AD(gt)

    ∠BAC=∠DAC(=90)

⇒△ABC=△ADC(c-g-c)

⇒BC=DC(2 cạnh tương ứng)

Xét △BCD có BC=DC(cmt)

⇒△BCD cân tại C (định lý tam giác cân)

c)

Xét △BCD cân tại C có

K là trung điểm của BC (gt)

A là trung điểm của BD (gt)

⇒DK , AC là đường trung tuyến của △BCD

 mà DK cắt AC tại M nên M là trọng tâm của △BCD

⇒CM=2/3AC

⇒CM=2/3.8

⇒CM=16/3cm

d)

Xét △AMQ và △CMQ có

     MQ chung 

     MA=MC(gt)

     ∠AMQ=∠CMQ(=90)

⇒△AMQ=△CMQ(C-G-C)

⇒∠MAQ=∠C2(2 góc tương ứng )

     QA=QC( 2 cạnh tương ứng)

Vì △ABC=△ADC(theo b)

⇒∠C1=∠C2(2 góc tương ứng)

∠C1=∠MAQ

mà 2 góc này có vị trí SLT

⇒AQ//BC

⇒∠QAD=∠CBA( đồng vị )

mà∠CBA=∠CDA(△BDC cân tại C)

⇒∠QAD=∠QDA

⇒△ADQ cân tại Q

⇒QA=QD

mà QA=QC(cmt)

⇒DQ=CQ

⇒BQ là đường trung tuyến của△BCD 

⇒B,M,D thẳng hàng

 

a: Xét ΔABM và ΔAMC có

AM chung

AB=AC

BM=CM

=>ΔABM=ΔACM

b: ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC 

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

MB=MC=BC/2=16cm

AM=căn 20^2-16^2=12cm

AG=2/3*AM=8cm

a: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

c: Xét ΔBDC có 

BA là đường trung tuyến

DM là đường trung tuyến

BA cắt DM tại G

Do đó: G là trọng tâm

=>BG=2/3BA=6(cm)

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm