\(\frac{1}{4}\)AB. Trên cạnh AC l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN=BC/2=a/2

Xét hình thang BMNC có

P là trung điểm của MB

Q là trung điểm của CN

Do đó: PQ là đường trung bình

\(\Leftrightarrow PQ=\dfrac{\left(MN+BC\right)}{2}=\dfrac{\left(\dfrac{a}{2}+a\right)}{2}=\dfrac{3}{2}a:2=\dfrac{3}{4}a\)

31 tháng 10 2016

Bạn xem lại đề nhé!

Đặt góc BDC = y , góc ADB = x thì góc DBC = 2x , góc ABD = 2y

Ta có : Góc ABC = góc ABD + góc DBC = 2x+2y = 2(x+y) = 2*góc ADC

Trong tam giác ABC : góc BAC = góc BCA = (180 độ - 2x-2y)/2 = 90 độ -x -y

Trong tam giác BCD : góc BCD = 180 độ - 2x -y

=> góc ACD = góc BCD - góc BCA = (180 độ -2x-y) - (90 độ -x -y) = 90 độ -x

Tương tự với tam giác ABD có góc CAD = (180 độ -2y-x)-(90 độ -x-y)

= 90 độ - y

Ta chưa có điều kiện x = y do vậy góc ACD khác góc CAD nên đề sai.

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD

5 tháng 2 2017

Bất đẳng thức à

5 tháng 2 2017

ủa nhưng mà thỏa mãn cái gì mới c.m mấy cái kia chứ

6 tháng 8 2016

\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(BĐVT,VT=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
                   \(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
                   \(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
                   \(=a^3+b^3=VP\)
\(\text{Vậy }a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

6 tháng 8 2016

Câu hỏi của nguyen cao long - Toán lớp 8 - Học toán với OnlineMath