Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=a/2
Xét hình thang BMNC có
P là trung điểm của MB
Q là trung điểm của CN
Do đó: PQ là đường trung bình
\(\Leftrightarrow PQ=\dfrac{\left(MN+BC\right)}{2}=\dfrac{\left(\dfrac{a}{2}+a\right)}{2}=\dfrac{3}{2}a:2=\dfrac{3}{4}a\)
Bạn xem lại đề nhé!
Đặt góc BDC = y , góc ADB = x thì góc DBC = 2x , góc ABD = 2y
Ta có : Góc ABC = góc ABD + góc DBC = 2x+2y = 2(x+y) = 2*góc ADC
Trong tam giác ABC : góc BAC = góc BCA = (180 độ - 2x-2y)/2 = 90 độ -x -y
Trong tam giác BCD : góc BCD = 180 độ - 2x -y
=> góc ACD = góc BCD - góc BCA = (180 độ -2x-y) - (90 độ -x -y) = 90 độ -x
Tương tự với tam giác ABD có góc CAD = (180 độ -2y-x)-(90 độ -x-y)
= 90 độ - y
Ta chưa có điều kiện x = y do vậy góc ACD khác góc CAD nên đề sai.
A B C D M N P Q K
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)
Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)
\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD
\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(BĐVT,VT=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VP\)
\(\text{Vậy }a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
Câu hỏi của nguyen cao long - Toán lớp 8 - Học toán với OnlineMath
MB=1/4AB nên AM=3/4AB
Xét ΔABC có
BM/BA=CN/CA
nên MN//BC
Xét ΔABC có MN//BC
nên MN/BC=AM/AB
=>MN/a=3/4
hay MN=3/4a