\(\widehat{ABD}=2\widehat{CDB}\) \(\wideh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Bạn xem lại đề nhé!

Đặt góc BDC = y , góc ADB = x thì góc DBC = 2x , góc ABD = 2y

Ta có : Góc ABC = góc ABD + góc DBC = 2x+2y = 2(x+y) = 2*góc ADC

Trong tam giác ABC : góc BAC = góc BCA = (180 độ - 2x-2y)/2 = 90 độ -x -y

Trong tam giác BCD : góc BCD = 180 độ - 2x -y

=> góc ACD = góc BCD - góc BCA = (180 độ -2x-y) - (90 độ -x -y) = 90 độ -x

Tương tự với tam giác ABD có góc CAD = (180 độ -2y-x)-(90 độ -x-y)

= 90 độ - y

Ta chưa có điều kiện x = y do vậy góc ACD khác góc CAD nên đề sai.

14 tháng 8 2016

Bạn tự vẽ hình :)

Gọi O là giao điểm của BN và CM . Đặt ON = x , OM = y

Ta có : AB2 = 4MB2=4.(4x2+y2)

AC2=4.NC2=4.(x2+4y2)

\(\Rightarrow AB^2+AC^2=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5BC^2\)

15 tháng 8 2016

làm sao đoạn đầu ra đc 4x^2.

14 tháng 8 2016

A B C D M N P Q K

Bạn cần thêm điều kiện AB = AD .

Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông 

Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)

Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)

\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)

Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD