K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

\(f\left(x\right)=4x\) ; \(g\left(x\right)=x^2\) \(\Rightarrow f\left(n\right)=4n\) ; \(g\left(n\right)=n^2\)

\(f\left(1\right)+f\left(2\right)+...+f\left(n\right)=4\left(1+2+...+n\right)=\frac{4n\left(n+1\right)}{2}\)

\(=\frac{4n^2+4n}{2}=\frac{4g\left(n\right)+f\left(n\right)}{2}\)

13 tháng 5 2018

Ta có :f(x) =0<=>a.0^2+b.0+c=0

<=>c=0

f(1)=a.1^2+b.1+c=a+b+c

f(-1)=a.(-1)^2 +b. (-1) =a-b+c

=>b=-b

=>b+b=0

=>2b=0

=>b=0

=>f(x)=ax^2

Vì x^2=(-x)^2 với mọi x

=>ax^2=a(-x)^2

=>f(x) =f(-x)

15 tháng 3 2017

cho đa thức f(x)=\(ax^2+bx+c\)

ta có:f(0)=c\(\in\)z(1)

f(1)=a+b+c\(\in\)zmà c\(\in\)z

=>a+b\(\in\)z(2)

f(2)=4a+2b+c\(\in z\)mà c\(\in\)z

=>4a+2b\(\in\)z(3)

từ (3)(2)ta có( 4a+2b)-(a+b)=3a-b\(\in\)z

mà 3\(\in\)z=>a-b\(\in\)z(4)

từ (2)(4)=>a+b+a-b=2a\(\in\)

mà 2\(\in\)z=>a\(\in\)z(5)

=>a\(\in\)z mà a-b\(\in\)z=>b\(\in\)z(6)

từ (1)(5)(6)=>f(x) nguyên với mọi giá trị x nguyên

15 tháng 3 2017

chỗ \(\left\{{}\begin{matrix}2a\in Z\\2\in Z\end{matrix}\right.\Rightarrow a\in Z\)

tớ thấy nó sai sai ý. vd như a= 1.5 thây

a: f(1)=1

=>\(a\cdot1^2+b\cdot1+1=1\)

=>a+b=0

f(-1)=3

=>\(a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+1=3\)

=>a-b=2

mà a+b=0

nên \(a=\dfrac{2+0}{2}=1;b=2-1=1\)

b: a=1 và b=1 nên \(f\left(x\right)=x^2+x+1\)

\(\Leftrightarrow\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\)

Gọi d=ƯCLN(n^2+n+1;n)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n\left(n+1\right)⋮d\end{matrix}\right.\)

=>\(\left(n^2+n+1\right)-n\left(n+1\right)⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n^2+n+1;n)=1

=>\(\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\) là phân số tối giản