K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Ta có :f(x) =0<=>a.0^2+b.0+c=0

<=>c=0

f(1)=a.1^2+b.1+c=a+b+c

f(-1)=a.(-1)^2 +b. (-1) =a-b+c

=>b=-b

=>b+b=0

=>2b=0

=>b=0

=>f(x)=ax^2

Vì x^2=(-x)^2 với mọi x

=>ax^2=a(-x)^2

=>f(x) =f(-x)

21 tháng 6 2020

\(x=1\Rightarrow f\left(1\right)+f\left(-1\right)=2016;x=-1\Rightarrow f\left(-1\right)-f\left(1\right)=2014\Rightarrow\)

\(f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\Leftrightarrow f\left(1\right)=1\)

Trả lời: 

Bạn shitbo làm đúng rồi

^_^

\(.\)

31 tháng 7 2015

*Thay x=1=>f(1)+f(-1)=1+1=2

*Thay x=-1=>f(-1)-f(1)=-1+1=0

=>f(1)+f(-1)-(f(-1)-f(1))=2-0

=>2.f(1)=2

=>f(1)=1

31 tháng 7 2015

f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2  (*)

f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)

=> 2. f(1) = 2 => f(1) = 1

Theo đề ra. ta có: f(x)+x.f(-x)=x+1

*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1)   (1)

*) Xét x=1 => f(1)+(-1)= 2   (2)

Từ 1 và 2 => f(1)=2:2=1

9 tháng 4 2019

Ta có 2f(x)-x.f(1/x)=x^2

Với x=2 => 2f(2)-2.f(1/2)=4 (1)

Với x=1/2 => 2 . f(1/2)- 1/2 f(2) = (1/2)^2

               => 2 .f(1/2) -1/2f(2)=1/4(2)

lấy (2)+(1) ta được 3/2 f(2)=17/4  => f(2)=17/6

Tính f(1/3) làm tương tự thay x=3 và 1/3 

T ic k nha

24 tháng 5 2020

ta có: f(x) + xf(-x) = x + 2015 với mọi giá trị của x 

=> f(1) + 1.f(-1) = 1 + 2015  => f(1) + f(-1) = 2016 (1)

f(-1) - 1 . f(1) = - 1 + 2015 => f(-1) - f(1) = 2014  (2) 

Từ (1); (2) => f(-1) = ( 2016 + 2014 ) : 2 = 2015