Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,f(x)+g(x)=\(\left(a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\right)+\left(b_nx^{n-1}+...+b_1x+b_0\right)\)
=\(a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0+b_nx^n+b_{n-1}x^{n-1+...+b_1x+b_0}\)
\(=\left(a_nx^n+b_nx^n\right)+\left(a_{n-1}x^{n-1}+b_{n-1}x^{n-1}\right)+...+\left(a_1x+b_1x\right)+\left(a_0+b_0\right)\)
b
f(x)+g(x)=\(\left(a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\right)+\left(b_nx^n+b_{n-1}x^{n-1}+...+b_1x+b_0\right)\)
\(=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0-b_nx^n-b_{n-1}-b_1x+b_0\)
\(=(a_nx^n-b_nx^n)+(a_{n-1}x^{n-1}-b_{n-1}x^{n-1})+...+(a_1x-b_1x)+\left(a_0+b_0\right)\)
\(=\left(a_n-b_n\right)x^n+(a_{n-1}-b_{n-1})x^{n-1}+...+\left(a_1-b_1\right)x+\left(a_0-b_0\right)\)
a, f(1) = 100 + 99 + ... + 2 + 1 + 1
=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"
=> f(x) = 4951
Hihi..
b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)
g(1) = 1 . 2016
g(1) = 2016
g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015
g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]
g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]
g(-1) = 1008 - 1008
g(-1) = 0
k nha!!
Lời giải:
\(f(1)=f(-1)\)
\(\Leftrightarrow a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\)
\(\Leftrightarrow 2(a_3+a_1)=0\Leftrightarrow a_3+a_1=0(1)\)
\(f(2)=f(-2)\)
\(\Leftrightarrow 16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\)
\(\Leftrightarrow 16a_3+4a_1=0\Leftrightarrow 4a_3+a_1=0(2)\)
Từ \((1);(2)\Rightarrow a_3=a_1=0\)
Do đó:
\(f(x)=a_4x^4+a_2x^2+a_0\)
\(\Rightarrow f(-x)=a_4(-x)^4+a_2(-x)^2+a_0=a_4x^4+a_2x^2+a_0\)
Vậy $f(x)=f(-x)$.
a. Ta có: f(x) + h(x) = g(x)
Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)
= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1
= -x3 + 4x2 – x + 6
b. Ta có: f(x) – h(x) = g(x)
Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)
= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5
= x3 – 4x2 + x – 6