\(f\left(x\right)=5x-7;g\left(x\right)=3x+1\)

1. Tìm nghiệm c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

a) Ta có: h(x) = 5x-7-(3x+1) = (5x-3x)-(7+1) = 2x-8

Vì 2x-8 = 0 nên x=4

Vậy nghiệm của đa thức h(x) là 4

b) Vì 2x-8 = 0 tại x = 4 nên 5x-7 = 3x+1 tại x = 4

 Vậy f(x)=g(x) tại x =4

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

29 tháng 3 2021

Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:

G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)

Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)

\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)

Đồng nhất hệ số ta được:

\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)

Vậy a = -3 , b = -1

30 tháng 3 2021

đồng nhất hệ số mình chưa học nha

7 tháng 4 2019

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

7 tháng 4 2019

ak bạn thêm kết kuận nha!

Bài này chill ha ? nhưng ko ai lm cx lạ :vvv

a, Ta có : \(f\left(1\right)=5.1-1^3+3.1^2-1=5-1+3-1=6\)

\(g\left(-1\right)=-\left(-1\right)^3+3\left(-1\right)^2+2\left(-1\right)-3=1+3-2-3=-1\)

\(f\left(1\right)-g\left(-1\right)=6-\left(-1\right)=7\)

b, Ta có : 

\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(5x-x^3+3x^2-1\right)-\left(-x^3+3x^2+2x-3\right)\)

\(=5x-x^3+3x^2-1+x^3-3x^2-2x+3=3x+2\)

c, \(\left|h\left(x\right)-5\right|+2x=2,5\Leftrightarrow\left|3x+2-5\right|+2x=2,5\)

\(\Leftrightarrow\left|3x-3\right|+2x=2,5\Leftrightarrow\left|3x-3\right|=2,5-2x\)

Chia 2 TH nhá vì lười :3 (nhưng ko dám chắc nha men) 

31 tháng 5 2020

cậu làm đúng r mk đăng chs chs thôi .

18 tháng 12 2017

a) f (x) + h (x) = g (x)

⇒h(x)=g(x)−f(x)⇒h(x)=g(x)−f(x)

h(x)=(x4−x3+x2+5)−(x4−3x2+x−1)h(x)=(x4−x3+x2+5)−(x4−3x2+x−1)

h(x)=x4−x3+x2+5−x4+3x2−x+1h(x)=−x3+4x2−x+6h(x)=x4−x3+x2+5−x4+3x2−x+1h(x)=−x3+4x2−x+6

b) f (x) - h (x) = g (x)

⇒h(x)=f(x)−g(x)⇔h(x)=(x4−3x2+x−1)−(x4−x3+x2+5)⇒h(x)=f(x)−g(x)⇔h(x)=(x4−3x2+x−1)−(x4−x3+x2+5)

⇔h(x)=x4−3x2+x−1−x4+x3−x2−5⇔h(x)=x3−4x2+x−6



26 tháng 3 2018

a. Ta có: f(x) + h(x) = g(x)

Suy ra: h(x) = g(x) – f(x) = (x4 – x3 + x2 + 5) – (x4 – 3x2 + x – 1)

= x4 – x3 + x2 + 5 – x4 + 3x2 – x + 1

= -x3 + 4x2 – x + 6

b. Ta có: f(x) – h(x) = g(x)

Suy ra: h(x) = f(x) – g(x) = (x4 – 3x2 + x – 1) – (x4 – x3 + x2 + 5)

= x4 – 3x2 + x – 1 – x4 + x3 – x2 – 5

= x3 – 4x2 + x – 6

5 tháng 4 2017

a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)

\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)

b/

\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)

\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)

\(=7x-7\)

Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)

\(\Leftrightarrow7x=7\Rightarrow x=1\)

Vậy để...............

c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)

hay \(\left(x+1\right)^2+2>0\)

\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)