K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

bạn học định lí bezout chưa nếu có:

giả sử f(x) chia hết cho x-1 thì áp dụng hệ quả định lí bezout ta có số dư trong phép chia f(x) cho x-1 là

=> f(1) = a.13+b.12+c.1+d=0

<=> a+b+c+d=0

vậy với a+b+c+d=0 thì f(x)chia hết cho x-1

16 tháng 4 2018

Ta có : 

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a.1^2+b.1+c\\f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{cases}}\)

  mà \(f\left(1\right)=f\left(-1\right)\Rightarrow a+b+c=a-b+c\)

                   \(\Rightarrow b=-b\)

Đến bước này em không biết vì em học lớp 7 

                                   

3 tháng 5 2018

Từ \(b=-b\Rightarrow2b=0\Rightarrow b=0\)

\(\Rightarrow a+c=0\left(f\left(1\right)=0,b=0\right)\)

\(\Rightarrow a=-c\)

Thay \(b=0,a=-c\)vào biểu thức M ta được:

\(M=\left(-c\right)^{2019}+0^{2019}+c^{2019}+2018\)

     \(=-c^{2019}+0+c^{2019}+2018\)

       \(=\left(-c^{2019}+c^{2019}\right)+2018\)

         \(=0+2018=2018\)

Vậy giá trị biểu thức M là \(2018\)

6 tháng 6 2019

a) \(f\left(x\right)=8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)

6 tháng 6 2019

b) \(g\left(x\right)=5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{5};1\right\}\)

Với x-1 ta có:

\(f\left(x\right)=a+b+c=0\)

Vậy x 1 nghiệm của đa thức f(x)

NV
13 tháng 1 2021

\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)

Cộng vế với vế:

\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)

Vậy \(a>0\)

14 tháng 3 2017

F(-2)=0=> -8a+4b+c=0 (1)

f(1)=6=> a+b+c=6 (2)

f(-1)=4=> -a+b+c=4 (3)

(2) trừ (3)=> 2a=2=> a=1; thay vào (3)=> c=5-b thay vào (1)

-8+4b+5-b=0=> b=1

\(\left\{{}\begin{matrix}a=-1\\b=1\\c=4\\f\left(x\right)=-x^3+x^2+4\end{matrix}\right.\)