Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
- Đa thức \(f\left(x\right)\)có số hạng tử là:
\(\left[\left(51-1\right):1+1\right]+1=52\)( số hạng tử)
\(\Rightarrow f\left(1\right)=1+1+1^2+1^3+...+1^{51}\)
\(=1+1+1+1+...+1\)( có 52 số 1)
\(=52\)
\(\Rightarrow f\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{51}\)
\(=1+\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)\)( có 25 số " -1 ")
= 0
Vậy f(1)=52 ; f(-1)=0
\(f\left(1\right)=1+1+1^2+...+1^{2013}=1.2014=2014\)
\(f\left(-1\right)=1-1+1-1+1-1+...+1-1=0+0+0+...+0=0\)
đúng nha
Ta có
\(F\left(0\right)=2016\)
\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)
\(\Leftrightarrow0+0+c=2016\)
\(\Leftrightarrow c=2016\)
\(F\left(1\right)=2016\)
\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)
\(\Leftrightarrow a+b+c=2017\)
\(\Leftrightarrow a+b+2016=2017\)
\(\Leftrightarrow a+b=1\) \(\left(1\right)\)
\(F\left(-1\right)=2018\)
\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)
\(\Leftrightarrow a-b+c=2018\)
\(\Leftrightarrow a-b+2016=2018\)
\(\Leftrightarrow a-b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)
\(\Rightarrow b=1-1.5=-0.5\)
Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)
\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)
\(=1.5\cdot4-0.5\cdot2+2016\)
\(=6-1+2016=2021\)
Vậy \(F\left(2\right)=2021\)
nhớ k nha
thay x=1
f(x)=1+1+1+1+....+1(52 số 1)
f(x)=52
thay x=-1
f(x)=(1+-1)+(1+-1)+(1+-1)+.........+(1+-1) (26 cặp)
=>f(x)=0
Thay x=1, ta có:
f(1)=1+1+1+1+.................+1+1 (có 52 số 1)
f(1)= 52
Thay x=-1, ta có:
f(-1)=(1-1)+(1-1)+.................+(1-1)
f(-1)=0+0+0+0+.................+0 (có 26 số 0)
f(-1)=0