K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

A(x) = (2a-1)x\(^2\) - (3-4a)x + 1 - 6a

Thay x=\(\frac{-1}{2}\)vào A, có:

(2a-1)(\(\frac{-1}{2}\))\(^2\) - (3-4a)(\(\frac{-1}{2}\)) + 1 - 6a=0 <=>(2a-1)\(\frac{1}{4}\)+(3-4a)\(\frac{1}{2}\)+1-6a=0 <=> \(\frac{a}{2}\)- \(\frac{1}{4}\)+\(\frac{3}{2}\) - 2a +1 - 6a=0
<=> \(\frac{2a}{4}\)-\(\frac{1}{4}\)+\(\frac{6}{4}\)-\(\frac{8a}{4}\)+ \(\frac{4}{4}\)- \(\frac{24a}{4}\)=0 <=>\(\frac{2a-1+6-8a+4-24a}{4}\)=0 => 2a -1 + 6 - 8a + 4- 24a=0 <=> 9-30a=0 <=> 30a =9
<=> a =\(\frac{9}{30}\)=\(\frac{3}{10}\) Vậy phườn trình có tập nghiệm S={\(\frac{3}{10}\)}

Thay \(x=\frac{-1}{2}\) vào đa thức \(A\left(x\right)=\left(2a-1\right)x^2-\left(3-4a\right)x+1-6a\), ta được:

\(A\left(-\frac{1}{2}\right)=\left(2a-1\right)\cdot\left(-\frac{1}{2}\right)^2-\left(3-4a\right)\cdot\frac{-1}{2}+1-6a\)

\(=\left(2a-1\right)\cdot\frac{1}{4}+\left(4a-3\right)\cdot\frac{-1}{2}+1-6a\)

\(=\frac{1}{2}a-\frac{1}{4}-2a+\frac{3}{2}+1-6a\)

\(=\frac{-15}{2}a+\frac{9}{4}\)

Để đa thức \(A\left(x\right)=\left(2a-1\right)x^2-\left(3-4a\right)x+1-6a\) nhận \(-\frac{1}{2}\) là nghiệm thì \(A\left(\frac{-1}{2}\right)=0\)

\(\frac{-15}{2}a+\frac{9}{4}=0\)

\(\Leftrightarrow\frac{-15}{2}a=\frac{-9}{4}\)

\(a=\frac{-9}{4}:\frac{-15}{2}=\frac{-9}{4}\cdot\frac{2}{-15}=\frac{3}{10}\)

Vậy: Khi \(a=\frac{3}{10}\) thì đa thức \(A\left(x\right)=\left(2a-1\right)x^2-\left(3-4a\right)x+1-6a\) nhận \(-\frac{1}{2}\) là nghiệm

7 tháng 6 2020

"a" bạn viết là 1/2 rồi

7 tháng 6 2020

Mình xin lỗi nhé mình viết nhầm (3-4a) thành (3-4x)

Bài 1 . cho hai đa thức: P(x) = 4x4 - 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4a. Tính P(x) + Q(x);b. Tính P(x) - Q(x).Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6a. Tính M(2) b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)c. Tìm nghiệm của đa thức A(x)Bài 3. Tìm nghiệm của các đa thức sau:a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 e. 2x2 - 6           ...
Đọc tiếp

Bài 1 . cho hai đa thức: P(x) = 4x- 2x3 - 7x2 + 2x + 1/3 và Q(x) = x4 + 3x3 - 6x2 - x - 1/4

a. Tính P(x) + Q(x);

b. Tính P(x) - Q(x).

Bài 2. cho đa thức: M(x) = x2 - 2x3 + x + 5 và N(x) = 2x3 - x - 6

a. Tính M(2) 

b. Tìm đa thức A(x) sao cho A(x) = M(x) + N(x); A(x), tính B(x) = M(x) - N(x)

c. Tìm nghiệm của đa thức A(x)

Bài 3. Tìm nghiệm của các đa thức sau:

a. 2x - 8                    b. 2x + 7                     c. 4 - x2                   d. 4x2 - 9 

e. 2x- 6                   f. x(x - 1)                    g. x + 2x                  h. x( x + 2 )

Bài 4. cho hai đa thức: f(x) = 2x+ 3x- x + 1 - x2 - x4 - 6x3

                                     g(x) = 10x3 + 3 - x4 - 4x3 + 4x - 2x2

a. Thu gọn đa thức: f(x), g(x) và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến.

b. Tính h(x) = f(x) + g(x); K(x) = f(x) - g(x)

c. Tìm nghiệm của đa thức h(x)

Bài 5. Tìm nghiệm của các đa thức:

a. 9 - 3x                b. -3x + 4                 c. x- 9                   d. 9x- 4

e. x2 - 2                f. x( x - 2 )                g. x2 - 2x                  h. x(x2 + 1 )

1

Tách ra, dài quá mn đọc là mất hứng làm đó.

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

14 tháng 8 2021

Mình cảm ơn ạ

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)

19 tháng 9 2023

a) Ta có:

B = (A + B) – A

= (x3 + 3x + 1) – (x4 + x3 – 2x – 2)

= x3 + 3x + 1 – x4 - x3 + 2x + 2

= – x4 + (x3 – x3) + (3x + 2x) + (1 + 2)

= – x4 + 5x + 3.

b) C = A - (A – C) 

= x4 + x3 – 2x – 2 –  x5 

= – x5 + x4 + x3 – 2x – 2.

c) D = (2x2 – 3) . A

= (2x2 – 3) . (x4 + x3 – 2x – 2)

= 2x2 . (x4 + x3 – 2x – 2) + (-3) .(x4 + x3 – 2x – 2)

= 2x2 . x4 + 2x2 . x3 + 2x2 . (-2x) + 2x2 . (-2) + (-3). x4 + (-3) . x3 + (-3). (-2x) + (-3). (-2)

= 2x6 + 2x5 – 4x3 – 4x2 – 3x4 – 3x3 + 6x + 6

= 2x6 + 2x5 – 3x4 + (-4x3 – 3x3) – 4x2+ 6x + 6

= 2x6 + 2x5 – 3x4 – 7x3 – 4x2+ 6x + 6.

d) P = A : (x+1) = (x4 + x3 – 2x – 2) : (x + 1)

Vậy P = x3 - 2

e) Q = A : (x2 + 1)

Nếu A chia cho đa thức x2 + 1 không dư thì có một đa thức Q thỏa mãn

Ta thực hiện phép chia (x4 + x3 – 2x – 2) : (x2 + 1)

Do phép chia có dư nên không tồn tại đa thức Q thỏa mãn

18 tháng 4 2018

2) Vì x=-1 là nghiệm của đa thức P(x)

=>P(-1)= m\(^2\)(-1)+16 =0

m\(^2\)(-1) = 0-16

m\(^2\)(-1) = -16

m\(^2\) = (-16):(-1)

m\(^2\) = 16

=> m = \(\sqrt{16}\)

=> m= 4 hoặc m= -4

=>Giá trị của m=4 hoặc m=-4

24 tháng 4 2018

thay x=-1 vào đa thức F(x) ta có :

F(-1)=2.a.(-1)\(^2\)+b.(-1)=0

2.a.1+b.(-1)=0

2.a-b =0

2a=0+b

=>2a=b

ta có M=\(\dfrac{a+b+5}{6a+10}\)

=\(\dfrac{a+2a+5}{6a+10}\)

=\(\dfrac{3a+5}{2\left(3a+5\right)}\)

=\(\dfrac{1}{2}\)