Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4+a\right)x^5y^2+\left(-3+7\right)x^3y\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
Vì đa thức có bậc là 4
mà \(x^5y^2\)có bậc là 7
nên : \(4+a=0\)<=> a = -4
Khi đó đa thức bằng: \(4x^3y\) có bậc là 4
Vậy a = -4
Nguyễn Linh Chi hôm qua cô con HD trình bày kiểu này :
\(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4x^5y^2+ax^5y^2\right)+\left(-3x^3y+7x^3y\right)\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
đến đây ta nhận thấy 4x3y có số bậc là 4 . Vì vậy (4+a)x5y2 không tồn tại hay 4+a=0
\(4+a=0\Rightarrow a=-4\)
a, \(2x-5xy+3x^2\)Bậc : 2
b, \(ax^3+2xy-5\)Bậc : 3
c, \(5x^3-4x+7x^2-8x^3+4x+1-5x^2=-3x^3+2x^2+1\)Bậc : 3
d, \(-3x^5-x^3y-xy^2+3x^5+2=-x^3y-xy^2+2\)Bậc : 4
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0
Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)
ax5y2 - 3x3y + 7x3y + ax5y2
= 2ax5y2 + 4x3y
Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4
Mà bậc của đa thức trên là 4
\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0
Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4
Chúc bn học tốt!
Theo đầu bài ta có bậc của đa thức là 5 (2+3=5) mà bậc lớn nhất là : 6 ( 5+1=6)
\(\Rightarrow5x^5y+ax^5y=0\)
\(\Rightarrow5+a=0\)
\(\Rightarrow a=-5\)
HT
\(5x^5y-2x^3y^2+5x^3y^2+ãx^5y\)
\(=x^5y.\left(5-a\right)+x^3y^2.\left(5-2\right)\)
\(=x^5y.\left(5-a\right)+x^3y^2.3\)
ta thấy trong đa thức này có 2 đơn thức là \(x^5y.\left(5-a\right)\) có bậc là 6 và đơn thức \(x^3y^2.3\) có bậc là 5
vì thế để đa thức có bậc là 5 thì \(x^5y.\left(5-a\right)=0\Rightarrow a=5\)