\(5+5^2+5^3+5^4+...+5^{19}+5^{20}\)

Tìm số dư khi chia D cho 31

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

D = 1 + 5 + 52 + 53 + 54 +...+ 519 + 520 - 1

D = (1 + 5 + 52) + (53 + 54 + 55) +...+ (518 + 519 + 520) - 1

D = (1 + 5 + 52) + 5(1 + 5 + 52) +...+ 518 (1 + 5 + 52) - 1

D = (1 + 5 + 52) (1 + 5+...+ 518) - 1

D = 31 (1 + 5+...+ 518) - 1

D = 31 (1 + 5+...+ 518) - 31 + 30

Vì 31 (1 + 5+...+ 518) - 31 chia hết cho 31 

Nên 31 (1 + 5+...+ 518) - 31 + 30 chia cho 31 dư 30

Vậy D chia 31 dư 30 

    

11 tháng 5 2016

D =5+5^2+5^3+......+5^19+5^20

→ Tổng D có số các số hạng là : (20-1)/1+1 =20

→ Ta chia tổng D thành 6 nhóm mỗi nhóm gồm 3 số và thừa ra ngoài 2 số

→ D = (5+5^2) + (5^3+5^4+5^5) + (5^6+5^7+5^8) + ........ + (5^18+5^19+5^20)

       =  (5+25) + 5^3.(1+5+5^2) + 5^6.(1+5+5^2) + ......... + 5^18.(1+5+5^2)

       =  30 + (5^3+5^6+.......+5^18).(1+5+25)

       =  30 + (5^3+5^6+.......+5^18).31

Ta thấy : 31 chia hết cho 31 nên (5^3+...+5^18).31 chia hết cho 31

             30 chia cho 31 dư 30

→ D chia cho 31 dư 30

 Vậy D chia cho 31 dư 30

26 tháng 3 2018

Ta có :

A=5 + 5^2 + 5^3 + 5^4 + ....... + 5^19 + 5^20

=> Tổng A có số hạng tử là: (20 -1)/1 + 1 = 20

=> Ta có thể chia tổng A thành 6 nhóm 3 số và thừa ra ngoài 2 số

A = (5 + 5^2) + (5^3 + 5^4 + 5^5) + .......... + (5^18 + 5^19 + 5^20)

=> A = ( 5 + 25) + 5^3*(1 + 5 + 5^2) + ...... + 5^18*(1 + 5 + 5^2)

=> A = 30 + (1 + 5 + 5^2)*(5^3 + .... + 5^18)

=>A = 30 + 31*(5^3 + ....... + 5^18)

Vì 31 chia hết cho 31 nên 31*(5^3 + ..... +5^18) cùng chia hết cho 31

mà 30 chia cho 31 dư 30

=> Tổng A chia cho 31 dư 30

Vậy A chia cho 31 dư 30

26 tháng 3 2018

\(A=5+5^2+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)+...+5^{18}\left(1+5+5^2\right)\)

\(A=5+25+\left(1+5+5^2\right)\left(5^3+5^6+...+5^{18}\right)\)

\(A=30+31\left(5^3+5^6+...+5^{18}\right)\)

Ta thấy \(31\left(5^3+5^6+...+5^{18}\right)⋮31\) dư 0

\(A=30+31\left(5^3+5^6+...+5^{18}\right)\div31\) dư 30

9 tháng 5 2016

d = 5(1 + 5 + 52) + 54(1 + 5 + 52) + ...+ 518(1 + 5 + 52)

   = (1 + 5 + 52).(5 + 54 +...+ 518)

   = 31.((5 + 54 +...+ 518) chia hết cho 31

Vậy: d chia cho 31 không dư

7 tháng 4 2018

Dư 0 nhé

23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)

21 tháng 9 2016

???????

21 tháng 9 2016

uk ??????????????????

a) Ta có :

A = 50 + 51 + 52 + ... + 52010 + 52011

=> 5A = 51 + 52 + 53 + ... + 52012

=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )

=> 4A = 22012 - 50 = 52012 - 1

=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5

b) Phần a ta đã tính được 4A + 1 = 52012

Mà 4A + 1 = 5x

=> 5x = 52012

=> x = 2012

8 tháng 5 2019

\(A=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)

\(=5.31+5^4.31+5^7.31=31.\left(5+5^4+5^7\right)\)chia hết cho 31

Vậy A chia 31 dư 0

8 tháng 5 2019

\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+8}\)

\(=1+\frac{1}{\left(1+2\right).3.\frac{1}{2}}+\frac{1}{\left(1+3\right).3.\frac{1}{2}}+...+\frac{1}{\left(1+8\right).8.\frac{1}{2}}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}\)

\(=1+2.\left(\frac{3-2}{2+3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\right)\)

\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)

\(=1+2\left(\frac{1}{2}-\frac{1}{9}\right)\)

\(=1+2.\frac{7}{18}=1+\frac{7}{9}=\frac{16}{9}\)