Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Mình không biết làm.
Bài 2:
TH1: n là số chẵn => n = 2k (k thuộc N), khi đó (n+20102011) = (2k+20102011) là số chẵn (vì 2k chẵn và 20102011 là số chẵn)
=> (n+20102011) chia hết cho 2.
Nên (n+20102011)(n+2011) chia hết cho 2
TH2: n là số lẻ => n = 2k+1 (k thuộc N), khi đó n + 2011 = 2k + 1 + 2011 = 2k + 2012 là số chẵn (vì 2k và 2012 là số chẵn)
=> n + 2011 chia hết cho 2
Nên (n+20102011)(n+2011) chia hết cho 2
Vậy (n+20102011)(n+2011) chia hết cho 2 với mọi n thuộc N
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
Câu a )
S = 5 + 52 +..... + 52012
=> S \(⋮5\)
S = 5 + 52 +..... + 52012
S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )
S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )
S = 5 x 26 + 52 x 26 + ................ + 52010 x 26
S = 26 ( 5 + 52 + .... + 52010 )
=> S\(⋮26\)
=>\(S⋮13\)( do 26 = 13 x 2 )
Do ( 5 , 13 ) = 1
=> \(S⋮5x13\)
=> \(S⋮65\)
Bài 1 : Theo đề ta có :
5x . 5x+1 . 5x+2 \(\le\)100....000 ( 18 chữ số 0 ) : 218 ( x \(\in\)N )
=> 5x+x+1+x+2 \(\le\)1018 : 218
=> 53x+3 \(\le\)518
=> 3x + 3 \(\le\)18
=> 3x \(\le\)15
=> x \(\le\)5
Mà x \(\in\)N nên x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 ; 4 ; 5 }
Bài 2 : Ta có :
S = 1 + 2 + 22 + 23 + ... + 22005
2S = 2 + 22 + 23 + 24 + ... + 22006 ( Nhân 2 các số hạng trong tổng )
S = 2S - S = ( 2 + 22 + 23 + 24 + ... + 22006 ) - ( 1 + 2 + 22 + 23 + .. + 22005 )
= 22006 - 1 ( Triệt tiệu các số hạng giống nhau )
=> S < 22006
Mặt khác 5 . 22004 > 4 . 22004 = 22 . 22004 = 22006
=> 5 . 22004 > 22006
Do đó S < 5. 22004
Vậy S < 5 . 22004
Ta có :
\(A=1+5+5^2+...+5^{32}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)
\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)
\(A=31+31.5^3+...+31.5^{30}\)
\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31
Vậy \(A\) chia hết cho 31
\(a)\) Ta có :
\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow\)\(ab+ac< ab+bc\)
\(\Leftrightarrow\)\(ac< bc\)
\(\Leftrightarrow\)\(a< b\)
Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)
Vậy ...
Chứng tỏ rằng :
a) 1+5+52+53+.......+5501 \(⋮\)6
b) 2+22 +23 +.. + 2100 vừa \(⋮\)31, vừa \(⋮\) cho 5
a/ \(1+5+5^2+..........+5^{501}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)
\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)
\(=1.6+5^2.6+.............+5^{500}.6\)
\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)
b/ \(2+2^2+2^3+............+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+..........+2^{96}.31\)
\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)
a)1+5+5^2+5^3+........+5^501
= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)
=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)
=6+150(5^2+5^3+.......+5^500)
mà 6 chia hết cho 6
150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6
=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6
=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6
=> 1+5+5^2+5^3+........+5^501 chia hết cho 6
a) Ta có :
A = 50 + 51 + 52 + ... + 52010 + 52011
=> 5A = 51 + 52 + 53 + ... + 52012
=> 5A - A = ( 51 + 52 + 53 + ... + 52012 ) - ( 50 + 51 + 52 + ... + 52010 + 52011 )
=> 4A = 22012 - 50 = 52012 - 1
=> 4A + 1 = ( 52012 - 1 ) + 1 = 52012 llalàlà 1 lũy thừa của 5
b) Phần a ta đã tính được 4A + 1 = 52012
Mà 4A + 1 = 5x
=> 5x = 52012
=> x = 2012