Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
a) A = 2 + 22 + 23 + ... + 2100
2A = 22 + 23 + 24 + ... + 2101
2A - A = (22 + 23 + 24 + ... + 2101) - (2 + 22 + 23 + ... + 2100)
A = 2101 - 2
b) B = 1 + 3 + 32 + ... + 3255
3B = 3 + 32 + 33 + ... + 3256
3B - B = (3 + 32 + 33 + ... + 3256) - (1 + 3 + 32 + ... + 3255)
2B = 3256 - 1
B = \(\frac{3^{256}-1}{2}\)
c) C = 1 + 4 + 42 + ... + 4100
4C = 4 + 42 + 43 + ... + 4101
4C - C = (4 + 42 + 43 + ... + 4101) - (1 + 4 + 42 + ... + 4100)
3C = 4101 - 1
C = \(\frac{4^{101}-1}{3}\)
d) D = 1 + 5 + 52 + ... + 51000
5D = 5 + 52 + 53 + ... + 51001
5D - D = (5 + 52 + 53 + ... + 51001) - (1 + 5 + 52 + ... + 51000)
4D = 51001 - 1
D = \(\frac{5^{1001}-1}{4}\)
Ta có :
\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+..............+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)
\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.............+\dfrac{100}{3^{99}}\)
\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^3}+.....+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+.......+\dfrac{101}{3^{101}}\right)\)
\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6D=3+1+\dfrac{1}{3}+............+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6D-2D=\left(3+1+\dfrac{1}{3}+..........+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{203}{3^{100}}< 3\)
\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)
~ Học tốt ~
Nhiều thế ưu tiên làm câu 2 trước
a) A = 1 + 3 + 32 + ... + 3100
3A = 3 + 32 + ... + 3101
3A - A = 3101 - 1
2A = 3101 - 1 => A = \(\frac{3^{101}-1}{2}\)
b) B = 1 + 4 + 42 + ... + 4100
4B = 4 + 42 + ... + 4101
4B - B = 4101 - 1
3B = 4101 - 1 => B = \(\frac{4^{101}-1}{3}\)
c) C = 1 + 5 + 52 + ... + 5100
5C = 5 + 52 + ... + 5101
5C - C = 5101 - 1
4C = 5101 - 1 => C = \(\frac{5^{101}-1}{4}\)
d) chả hiểu gì hết
a) \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{31.34}\)
\(A=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{31}-\frac{1}{34}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{34}\right)\)
\(A=\frac{2}{3}\cdot\frac{33}{34}=\frac{11}{17}\)
b) \(B=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+...+\frac{3}{210}\)
\(B=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+...+\frac{6}{420}\) ( 3/1 = 6/2; 6/6=3/3;..)
\(B=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{20.21}\)
\(B=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)
\(B=6.\left(1-\frac{1}{21}\right)=6\cdot\frac{20}{21}=\frac{40}{7}\)
Ta có D = 1/2^2 + 1/3^2 + ... + 1/100^2
= 1/4 + ( 1/3.3 + ... + 1/100.100 )
Ta thấy
1/3.3 < 1/2.3
...
1/100.100 < 1/99.100
Suy ra 1/4 + 1/3.3 + ... + 1/100.100 < 1/4 + 1/2.3 + ... + 1/99.100
Suy ra 1/4 + 1/3^2 + ... + 1/100^2 < 1/4 + ( 1/2 - 1/3 ) + ... + ( 1/99 - 1/100 )
Hay D < 1/4 + ( 1/2 - 1/100 ) + { ( 1/3 + ... +1/99 ) - (1/3 + ... + 1/99 ) }
Suy ra D < 1/4 + 1/2 -1/100 + 0
Suy ra D < 3/4 - 1/100
Do đó D < 3/4