Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}\)
\(\frac{1}{3}và\frac{3}{4}\)
\(\frac{1}{3}=\frac{4}{12}\)
\(\frac{3}{4}=\frac{9}{12}\)
Vì\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)
Ta có: \(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{101}{3^{101}}\right)\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(\Rightarrow4D=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D< 3-\frac{203}{3^{100}}< 3\Rightarrow D< \frac{3}{4}\left(ĐPCM\right)\)
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}=A-\frac{101}{3^{101}}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(3A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow2A=3-\frac{1}{3^{100}}\Rightarrow A=\frac{3}{2}-\frac{1}{2.3^{100}}< \frac{3}{2}\)
\(\Rightarrow2D=A-\frac{101}{3^{101}}< A< \frac{3}{2}\Rightarrow D< \frac{3}{4}\)
Ta có :
\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+..............+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)
\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.............+\dfrac{100}{3^{99}}\)
\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^3}+.....+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+.......+\dfrac{101}{3^{101}}\right)\)
\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6D=3+1+\dfrac{1}{3}+............+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(6D-2D=\left(3+1+\dfrac{1}{3}+..........+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)
\(4D=3-\dfrac{203}{3^{100}}< 3\)
\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)
~ Học tốt ~
6D ở đâu ra hả bn Nguyễn Thanh Hằng