Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng các giá trị của m trên đoạn \(\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) có nghĩa là \(x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{2}\right]\) pk?
\(\Rightarrow cosx\in\left[0;1\right]\)
\(y=2cos^2x+cosx-1+\left|2m-1\right|\)
Đặt \(t=cosx;t\in\left[0;1\right]\)
\(y=2t^2+t-1+\left|2m-1\right|\)
Xét BBT của \(f\left(t\right)=2t^2+t-1;t\in\left[0;1\right]\)
\(\Rightarrow f\left(t\right)_{min}=-1\Leftrightarrow t=0\Leftrightarrow cosx=0\)\(\Leftrightarrow x=\dfrac{\pi}{2}\)
\(\Rightarrow y\ge-1+\left|2m-1\right|\)
Để \(y_{min}=2\Leftrightarrow-1+\left|2m-1\right|=2\)\(\Leftrightarrow m=2;m=-1\)
\(\Rightarrow\)Tổng m bằng \(1\)
Lời giải:
$-\frac{4}{5}=\cos 2x=2\cos ^2x-1$
$\Leftrightarrow \cos ^2x=\frac{1}{10}$
Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\cos x>0$
$\Rightarrow \cos x=\sqrt{\frac{1}{10}}$
$\sin^2x=1-\cos ^2x=\frac{9}{10}$
Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\sin x>0$
$\Rightarrow \sin x=\frac{3}{\sqrt{10}}$
$\sin (x+\frac{\pi}{3})=\sin x\cos \frac{\pi}{3}+\cos x\sin \frac{\pi}{3}$
$=\sqrt{\frac{9}{10}}.\frac{1}{2}+\sqrt{\frac{1}{10}}.\frac{\sqrt{3}}{2}=\frac{\sqrt{30}+3\sqrt{10}}{20}$
\(m+3\sqrt[3]{m+3cosx}=cos^3x\)
Đặt \(\sqrt[3]{m+3cosx}=t\Rightarrow m=t^3-3cosx\)
\(\Rightarrow t^3-3cosx+3t=cos^3x\)
\(\Leftrightarrow t^3+3t=cos^3x+3cosx\)
Hàm \(f\left(t\right)=t^3+3t\) có \(f'\left(t\right)=3t^2+3>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow t=cosx\) (hoặc là bạn liên hợp cũng được, tùy thích)
\(\Leftrightarrow m=t^3-3cosx=cos^3x-3cosx\)
Đặt \(cosx=u\in\left[-1;1\right]\Rightarrow f\left(u\right)=u^3-3u=m\)
Xét hàm \(f\left(u\right)=u^3-3u\) trên \(\left[-1;1\right]\)
\(f'\left(u\right)=3u^2-3\Rightarrow u=\pm1\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=-2\Rightarrow-2\le f\left(u\right)\le2\)
\(\Rightarrow-2\le m\le2\)
Lần sau bạn vào cái hình E để gửi câu hỏi nha!
\(P=\dfrac{sin^2\alpha-sin\alpha\cdot cos\alpha+2cos^2\alpha}{2sin^2\alpha-cos^2\alpha}\)
\(P=\dfrac{tan^2\alpha-tan\alpha+2}{2tan^2\alpha-1}\) (Chia cả tử và mẫu cho \(cos^2\alpha\))
\(P=\dfrac{3^2-3+2}{2\cdot3^2-1}=\dfrac{8}{17}\)
Chúc bn học tốt!
Ta có : sin2 x + cos2 x = 1 ⇒ sin2 x = 1 – cos2 x.
⇒ P = 3.sin2 x + cos2 x
= 3.(1 – cos2x) + cos2 x
= 3 – 3.cos2x + cos2x
= 3 – 2.cos2x
= 3 – 2.(1/3)2
= 3 – 2/9
= 25/9.
\(\sin^2x=\sqrt{1-\left(-\dfrac{4}{5}\right)^2}=\dfrac{9}{25}\)
mà \(\sin x>0\)
nên \(\sin x=\dfrac{3}{5}\)
=>\(\tan x=-\dfrac{3}{4}\)
\(\Leftrightarrow\cot x=-\dfrac{4}{3}\)
\(P=sin^22x-\left[2sin\dfrac{x}{2}cos\dfrac{x}{2}\left(cos^4\dfrac{x}{2}-sin^4\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx\left(cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\right)\left(cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}\right)\right]^2\)
\(=sin^22x-\left[sinx.cosx.1\right]^2\)
\(=sin^22x-\left[\dfrac{1}{2}sin2x\right]^2\)
\(=\dfrac{3}{4}sin^22x=\dfrac{3}{4}\left(1-cos^22x\right)=\dfrac{3}{4}\left(1-\dfrac{1}{4}\right)=\dfrac{9}{16}\)
\(cosx=\dfrac{4}{5}\Rightarrow cos^2x=\dfrac{16}{25}\)
\(\Rightarrow sin^2x=1-cos^2x=1-\dfrac{16}{25}=\dfrac{9}{25}\)
\(\Rightarrow\sqrt{cos2x}=\sqrt{cos^2x-sin^2x}=\sqrt{\dfrac{16}{25}-\dfrac{9}{25}}=\sqrt{\dfrac{7}{25}}=\dfrac{\sqrt{7}}{5}\)
Em mới lớp 8 nên làm không chắc nhé anh/chị.