K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 12 2020

\(m+3\sqrt[3]{m+3cosx}=cos^3x\)

Đặt \(\sqrt[3]{m+3cosx}=t\Rightarrow m=t^3-3cosx\)

\(\Rightarrow t^3-3cosx+3t=cos^3x\)

\(\Leftrightarrow t^3+3t=cos^3x+3cosx\)

Hàm \(f\left(t\right)=t^3+3t\) có \(f'\left(t\right)=3t^2+3>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow t=cosx\) (hoặc là bạn liên hợp cũng được, tùy thích)

\(\Leftrightarrow m=t^3-3cosx=cos^3x-3cosx\)

Đặt \(cosx=u\in\left[-1;1\right]\Rightarrow f\left(u\right)=u^3-3u=m\)

Xét hàm \(f\left(u\right)=u^3-3u\) trên \(\left[-1;1\right]\)

\(f'\left(u\right)=3u^2-3\Rightarrow u=\pm1\)

\(f\left(-1\right)=2\) ; \(f\left(1\right)=-2\Rightarrow-2\le f\left(u\right)\le2\)

\(\Rightarrow-2\le m\le2\)

NV
9 tháng 1 2023

Đặt \(\sqrt{x-1}+\sqrt{5-x}=t\)

\(t\ge\sqrt{x-1+5-x}=2\)

\(t\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)

\(t^2=4+2\sqrt{\left(x-1\right)\left(5-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(5-x\right)}=\dfrac{t^2-4}{2}\)

Pt trở thành:

\(t+\dfrac{3\left(t^2-4\right)}{2}=m\Leftrightarrow\dfrac{3}{2}t^2+t-6=m\)

Xét hàm \(f\left(t\right)=\dfrac{3}{2}t^2+t-6\) với \(t\in\left[2;2\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=6+2\sqrt{2}\) \(\Rightarrow2\le f\left(t\right)\le6+2\sqrt{2}\)

\(\Rightarrow\) Pt có nghiệm khi \(2\le m\le6+2\sqrt{2}\)

9 tháng 1 2023

Anh ơi! Anh chỉ em tiếp ạ, em chưa hiểu cách suy điều kiện t của anh ạ, trước khi đặt t thì em điều kiện trong căn trước ạ! 

20 tháng 12 2020

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

NV
24 tháng 12 2020

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\Rightarrow\left\{{}\begin{matrix}2\le t\le2\sqrt{2}\\2\sqrt{-x^2+4}=t^2-4\end{matrix}\right.\)

Pt trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow t^2+t-1=-2m\)

Xét hàm \(f\left(t\right)=t^2+t-1\) trên \(\left[2;2\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=5\) ; \(f\left(2\sqrt{2}\right)=7+2\sqrt{2}\)

\(\Rightarrow5\le-2m\le7+2\sqrt[]{2}\)

\(\Rightarrow-\dfrac{7+2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Có đúng 1 giá trị nguyên của m thỏa mãn là \(m=-4\)

25 tháng 12 2020

chỗ 2<= t<= 2can2 làm sao ra được j mài

NV
20 tháng 12 2020

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) ko phải là nghiệm

- Với \(x>0\) chia 2 vế cho \(x\) ta được:

\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)

Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)

\(\Rightarrow t^2-4t+2=m\)

Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)

Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m

NV
3 tháng 1 2022

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) không phải nghiệm

- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:

\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)

Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)

Pt trở thành: \(t^2+2t+3-2m=0\)

\(\Leftrightarrow t^2+2t+3=2m\) (1)

Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)

Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)

Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)

\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)

3 tháng 1 2022

Em cảm ơn thầy ạ.

NV
30 tháng 12 2020

Đặt \(T=\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|\)

\(T=\left|\sqrt{\left(2x-3\right)^2+1}-\sqrt{\left(2x+5\right)^2+7^2}\right|\)

Trong hệ tọa độ Oxy, xét \(M\left(2x;0\right);A\left(3;1\right);B\left(-5;7\right)\)

Ta có: \(\left\{{}\begin{matrix}AM=\sqrt{\left(2x-3\right)^2+1}\\BM=\sqrt{\left(2x+5\right)^2+7^2}\end{matrix}\right.\) ;  \(AB=\sqrt{8^2+6^2}=10\)

\(\Rightarrow T=\left|AM-BM\right|\le AB=10\)

\(\Rightarrow0\le T\le10\)

\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(0\le m\le10\)

Có 11 giá trị nguyên của m thỏa mãn

2 tháng 4 2021

ĐK: \(-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\left(3\le t\le3\sqrt{2}\right)\)

\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{t^2-9}{2}\)

\(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\)

\(\Leftrightarrow m=f\left(t\right)=\dfrac{-t^2+2t+9}{2}\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m\le maxf\left(x\right)\)

\(\Leftrightarrow\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)