K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Chọn D

Cấp số nhân u n  có số hạng đầu u 1  và công bội  q

Do S n = 6 n - 1 nên q ≠ 1

Khi đó  S n = u 1 ( 1 - q n ) 1 - q = 6 n - 1

Ta có :  S 1 = u 1 ( 1 - q ) 1 - q ⇔ u 1 = 5

S 2 = u 1 1 - q 2 1 - q ⇔ q = 6

Vậy  u 5 = u 1 . q 4 = 6480

4 tháng 12 2017

Chọn đáp án A

Phương pháp

u 5 = S 5 - S 4

Cách giải

Ta có:

19 tháng 4 2023

Đáp án là C. Vì:

Gọi d là công bội của dãy cấp số nhân \((u_n) \) 

⇒ \(u_n=d.u_{n-1}=d^2.u_{n-2}=...=d^{n-2}.u_2=d^{n-1}.u_1\)

Suy ra: \(u_5=d^3.u_2 \Rightarrow d^3=\dfrac{u_5}{u_2}=\dfrac{48}{6}=8 \Rightarrow d=2\)

Có: \(u_2=d.u_1 \Leftrightarrow u_1=\dfrac{u_2}{d}=\dfrac{6}{2}=3\)

Theo đề: \(u_1+u_2+...+u_n=381 \)

\(\Leftrightarrow u_1+d.u_1+d^2.u_1+...+d^{n-1}u_1=381\)

\(\Leftrightarrow u_1(1+d+d^2+...+d^{n-1})=381\)

Mặt khác: \(u_1(1+d+d^2+...+d^{n-1})=3.\dfrac{d^n-1}{d-1} =3.\dfrac{2^n-1}{2-1}=3.(2^n-1)\)

\(\Rightarrow 3.(2^n-1)=381 \Leftrightarrow 2^n-1=127 \Leftrightarrow 2^n=128=2^7 \Rightarrow n=7\).

Vậy n = 7 thuộc (6;11)

27 tháng 10 2023

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77

19 tháng 1 2021

\(S_1=u_1=4-2=2\)

\(S_2=u_1+u_2=4^2-2.2=12\Rightarrow u_2=12-2=10\) 

\(\Rightarrow q=\dfrac{u_2}{u_1}=\dfrac{10}{2}=5\)

26 tháng 12 2017

Đáp án C

NV
22 tháng 12 2020

\(S_n=nu_1+\dfrac{n\left(n-1\right)}{2}d=n\left(n.\dfrac{d}{2}+u_1-\dfrac{d}{2}\right)=n\left(n+4\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{d}{2}=1\\u_1-\dfrac{d}{2}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=5\\d=1\end{matrix}\right.\)

\(u_n=5+1.\left(n-1\right)=n+4\)

25 tháng 1 2021

d = 2 mới đúng ạ

=)) Un = 5 + 2(n-1) = 2n + 3 

 

23 tháng 12 2019

Chọn C

- Do công sai và số hạng đầu là d = 1, u 1   =   1  nên đây là tổng của n số tự nhiên đầu tiên là:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

18 tháng 9 2017

a )   u 1   =   3 ,   q   =   2     b )   n   =   10     c )   n   =   13

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).