\(q=\frac{1}{4}\) số hạng thứ nhất, tổng của hai s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Theo giả thiết ta có :

               \(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)

             \(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)

             \(\Leftrightarrow u_1=-12\) V \(u_1=8\)

Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972

10 tháng 6 2017

Theo giả thuyêt ta có:

Chọn D

23 tháng 12 2016

ta có : U1

U2=U1.q

...

=> S3=U1(1+q+q2)=...........

16 tháng 9 2018

Chọn B

Giả sử ba số hạng a,  b, c lập thành cấp số cộng thỏa yêu cầu, khi đó b, a, c theo thứ tự đó lập thành cấp số nhân  công bội q. Ta có

a + c = 2 b a = b q ;   c = b q 2 ⇒ b q + b q 2 = 2 b ⇔ b = 0 q 2 + q − 2 = 0 .  

     Nếu  b = 0 ⇒ a = b = c = 0  nên a, b, c là cấp số cộng công sai d= 0 (vô lí).

     Nếu q 2 + q − 2 = 0 ⇔ q = 1  hoặc  q= -2. Nếu q = 1 ⇒ a = b = c  (vô lí), do đó q = -2.

25 tháng 5 2017

a)
Gọi q là công bội của \(\left(u_n\right)\). Ta có:
\(\left\{{}\begin{matrix}u_1+u_1q^4=51\\u_1q+u_1q^5=102\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1+u_1q^4}{u_1q_1+u_1q^5}=\dfrac{51}{102}\)\(\Leftrightarrow\dfrac{1+q^4}{q+q^5}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1+q^4}{q\left(1+q^4\right)}=\dfrac{1}{2}\)\(\Leftrightarrow\dfrac{1}{q}=\dfrac{1}{2}\)\(\Leftrightarrow q=2\).
Suy ra: \(u_1+2^4u_1=51\)\(\Leftrightarrow17u_1=51\)\(\Leftrightarrow u_1=3\).
b) \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\)\(\dfrac{3\left(1-2^n\right)}{1-2}=3\left(2^n-1\right)=3069\)
\(\Leftrightarrow2^n-1=1023\)\(\Leftrightarrow2^n=1024=2^{10}\)\(\Leftrightarrow n=10\).
Vậy tổng của 10 số hạng đầu tiên bằng 10.
c)
\(u_1.q^{n-1}=3.2^{n-1}=12288\)\(\Leftrightarrow2^{n-1}=4096=2^{12}\)\(\Leftrightarrow n-1=12\)\(\Leftrightarrow n=13\).
Vậy số hạng thứ 13 bằng 12 288.

20 tháng 11 2017

Kí hiệu u1,u2,u3,u4,u5 là các số hạng của cấp số nhân

Ta có :

Đáp án C

21 tháng 7 2019

Chọn đáp án D

u 4 = u 1 . q 3 = 48

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    \({u_9} = {u_1}.{q^{9 - 1}} = \left( { - 5} \right){.2^8} =  - 1280\)

b)    Ta có: \( - 320 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 64 \Leftrightarrow n = 7\)

 \( - 320\) là số hạng thứ 7 của cấp số nhân

c)    Ta có: \(160 = \left( { - 5} \right){.2^{n - 1}} \Leftrightarrow {2^{n - 1}} =  - {2^5}\)

 160 không là số hạng của cấp số nhân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_3} = {u_1}.{q^2} \Leftrightarrow \left( {\frac{{27}}{4}} \right) = 3.{q^2} \Leftrightarrow q = \frac{3}{2}\)

Năm số hạng đầu của cấp số nhân: \(3;\frac{9}{2};\frac{{27}}{4};\frac{{81}}{8};\frac{{243}}{{16}}\)

b)    Tổng 10 số hạng đầu:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{3\left( {1 - {{\left( {\frac{3}{2}} \right)}^{10}}} \right)}}{{1 - \frac{3}{2}}} = \frac{{3.\frac{{ - 58025}}{{1024}}}}{{1 - \frac{3}{2}}} = \frac{{ - 174075}}{{1024}}.\left( { - 2} \right) = \frac{{174075}}{{512}}\)