\(\frac{1}{x+1}+\frac{1}{y+2}+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2 2020

\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)

\(\Rightarrow x+y+z\ge3\)

\(P=\frac{x+y+z}{9}+\frac{1}{x+y+z}+\frac{8\left(x+y+z\right)}{9}\ge2\sqrt{\frac{x+y+z}{9\left(x+y+z\right)}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\\z=0\end{matrix}\right.\)

12 tháng 12 2015

x,y,z không âm thỏa mãn

\(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\Leftrightarrow x+y+z\ge3\)

\(P=\frac{a+b+c}{9}+\frac{1}{a+b+c}+\frac{8\left(a+b+c\right)}{9}\ge2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

P min  = 10/3 khi  a+b+c = 3

28 tháng 10 2018

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

19 tháng 5 2021
Min = 1 <=> x = z = 1 và y = 2
DD
22 tháng 5 2021

Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)

Dấu \(=\)xảy ra khi \(a=b\).

Áp dụng ta được: 

\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)

\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)

Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)

\(\Rightarrow2x+y+2z\le6\)

Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)

Dấu \(=\)xảy ra khi \(x=z=1,y=2\)

20 tháng 2 2020

Sửa đề VP là \(\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\).

Tham khảo:[TOPIC] ÔN THI BẤT ĐẲNG THỨC $\boxed{\text{THPT CHUYÊN VÀ HSG TỈNH}}$ NĂM HỌC 2019-2020 - Trang 2 - Bất đẳng thức và cực trị - Diễn đàn Toán học

30 tháng 5 2017

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

30 tháng 5 2017

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

15 tháng 1 2018

2. Có : 1/x + 1/y + 1/z = 0

=> 1 + x/y + x/z = 0 => x/y + x/z = -1

Tương tự : y/x + y/z = -1 ; z/x + z/y = -1

=> x/y + x/z + y/x + y/z + z/x + z/y = -3

Lại có : 1/x+1/y+1/z = 0

<=> xy+yz+zx/xyz = 0

<=> xy+yz+zx = 0

Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)

           = xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z

           = xy/z^2+xz/y^2+xy/z^2-3

=> xy/z^2+xz/y^2+xy/z^2 = 3

=> ĐPCM

Tk mk nha

Áp dụng BĐT Cô si ta có: 

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow b+c\ge4a.4bc=16abc\)