K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

đề có vấn đề nha bạn

8 tháng 8 2019

a, làm mẫu 

\(x^4+x^2y^2+y^4=4\)

\(\Rightarrow x^4+2x^2y^2+y^4-\left(xy\right)^2=4\)

\(\Rightarrow\left(x^2+y^2\right)^2-\left(xy\right)^2=4\)

\(\Rightarrow\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=4\)

Từ đây dễ rồi tự làm

6 tháng 7 2023

loading...  

6 tháng 7 2023

Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2(x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2  kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19

4 tháng 11 2019

Lê Đức Huy sai rồi bạn phải là x2-y-y2-x=0 chứ bạn

16 tháng 8 2020

Lê Nhật Minh này! Bạn k bt thì đừng nói. Có phải bài nào cx giống nhau đâu, mak có thế thì bạn cx sai

11 tháng 5 2016

Đặt \(x=\sqrt[4]{4-x^2y^2-y^4}\)

Thay x vào C rồi tính

T
11 tháng 11 2015

4x^2 + 4x + y^2 - 12=0

<=> 4x^2 +4x +1 +y^2 -13=0

<=> (2x +1)^2 x + y^2=13          (1)

Vì x; y là số nguyên => (2x +1)^2 ; y^2 là 1 số chính phương

Mà 13=2^2 +3^2 

Từ (1) => (2x + 1)^2=2 ^2 ; y^2=3^2 hoặc (2x +1)^2=3^2 ; y^2=2^2

.............

(Tự làm nốt bằng cách tìm ra x; y cụ thể rồi thay vào)

 

 

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)