K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái

=> VT = VP (đpcm)

10 tháng 9 2021

a) thay x=4 và y=5 vào biểu thức ta đc :129

b) tương tự....To be continued

 

 

a:\(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+y^3\)

\(=5^2+2\cdot5\cdot4+4^3\)

\(=25+40+64=129\)

12 tháng 6 2023

 

Với x, y là hai số dương, dễ dàng chứng minh x + y  2,

do x + y = 2  => 0 < xy ≤ 1 (1)

Ta lại có: 2xy( x2 + y2) ≤ 

=> 0 < 2xy(x2 + y2)  ≤ (x+y)4/4 = 4

=> 0 < xy( x2 + y2) ≤ 2 (2)

Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)

Dấu “=” xảy ra khi x = y = 1

1 tháng 7 2021

x⁴ + x²y² +y⁴                   

= (x²)² +  x²y² + (y²)²          

= (x²)² +  x²y² + (y²)²  + x²y² - x²y²       

= (x²)² +  2 x²y² + (y²)²  - x²y²      

= (x² + y²)²- (xy)²                  

=(x² + y² + xy)(x² + y² - xy)

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.

15 tháng 10 2023

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\\ =x\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^{16}-y^{16}\right)+xy^{16}\\ =x^{17}-xy^{16}+xy^{16}\\ =x^{17}\)

15 tháng 10 2023

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\)

\(=x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^{16}-y^{16}\right)+xy^{16}\)

\(=x^{17}-xy^{16}+xy^{16}\)

\(=x^{17}\)

Bài 3: 

a: Ta có: C=A+B

\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)

\(=2x^2-y+xy-x^2y^2\)

b: Ta có: C+A=B

\(\Leftrightarrow C=B-A\)

\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)

\(=-x^2y^2+3y-xy-2\)

13 tháng 11 2021

2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

13 tháng 8 2019

Bài tập: Chia đa thức cho đơn thức | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A