\(^{x^2}\)+  4y = 8

tìm GTNN  của P= x+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK

31 tháng 7 2019

Xét \(5P-\left(12x+10y+15z\right)=5x^2-32x+5y^2-30y+5z^2-20z.\)

                                                              \(=5x\left(x-6,4\right)+5y\left(y-6\right)+5z\left(z-4\right).\)(1)

Mà \(x,y,z\ge0\)nên từ \(12x+10y+15z\le60\)suy ra \(\hept{\begin{cases}12x\le60\\10y\le60\\15z\le60\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\y\le6\\z\le4\end{cases}\Rightarrow}}\hept{\begin{cases}x-6,4< 0\\y-6\le0\\z-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x-6,4\right)\le0\\y\left(y-6\right)\le0\\z\left(z-4\right)\le0\end{cases}.}}\)(2)

Từ (1) và (2) suy ra \(5P-\left(12x+10y+15z\right)\le0\)

\(\Rightarrow P\le\frac{12x+10y+15z}{5}\le\frac{60}{5}=12.\)

Vậy GTLN của P=12, Dấu '=' xảy ra khi \(\hept{\begin{cases}x\left(x-6,4\right)=y\left(y-6\right)=z\left(z-4\right)=0\\12x+10y+15z=60\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=0;z=4\\x=z=0;y=6\end{cases}.}}\)

18 tháng 10 2020

Ta có:

\(P=5x+4y+\frac{8}{x}+\frac{9}{y}\)

\(P=\left(\frac{8}{x}+2x\right)+\left(\frac{9}{y}+y\right)+3\left(x+y\right)\)

Áp dụng BĐT Cauchy ta được:

\(P\ge2\sqrt{\frac{8}{x}\cdot2x}+2\sqrt{\frac{9}{y}\cdot y}+3\cdot5\)

\(=2\cdot4+2\cdot3+15=29\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy Min(P) = 29 khi \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

18 tháng 10 2020

Cảm ơn ạ

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

25 tháng 5 2021

Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:

\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)

\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)

Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)

Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)

Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)

Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8

DD
25 tháng 5 2021

\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)

\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).

28 tháng 12 2019

Đặt \(\left(x,y,z\right)=\left(a+1,b+1,c+1\right)\Rightarrow a,b,c\ge0\)

Ta có : 

\(3x^2+4y^2+5z^2=52\Leftrightarrow3\left(a+1\right)^2+4\left(b+1\right)^2+5\left(c+1\right)^2=52\)

\(\Leftrightarrow3a^2+4b^2+5c^2+6a+8b+10c=40\)

\(\Leftrightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)=40+2a^2+b^2+10\left(ab+bc+ac\right)+4a+2b\)

\(\Rightarrow5\left(a+b+c\right)^2+10\left(a+b+c\right)\ge40\Leftrightarrow a+b+c\ge2\)

Do đó \(x+y+z=a+b+c+3\ge5\)

Vậy \(F_{min}=5\Leftrightarrow x=y=1;z=3\)

Chúc bạn học tốt !!!

28 tháng 12 2019

Bớt copppy đưa link tử tế cái :)))):

Cho các số thực x y z ge1 thỏa mãn 3x 2 4y 2 5z 2 52 Tìm ...

Tìm GTNN của F=x+y+z biết 3x^2+4y^2+5z^2-52 - H7.net

Search mạng đầy vler :333

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...

5 tháng 5 2018

Cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\forall a;b>0\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Mà \(ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{\frac{\left(a+b\right)^2}{4}}=\frac{8}{\left(a+b\right)^2}\) (đpcm)

Áp dụng ta được :

\(P=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(\frac{y}{2}+1\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{8}{\left(x+\frac{y}{2}+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)

\(\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}\)

Ta có : \(\left(x^2+1\right)+\left(y^2+4\right)+\left(z^2+1\right)\ge2x+4y+2z\)

\(\Leftrightarrow3y+6\ge2x+4y+2z\Rightarrow6\ge2x+y+2z\)

\(\Rightarrow x+\frac{y}{2}+z\le3\)\(\Rightarrow P\ge\frac{64}{\left(3+5\right)^2}=1\)

Vậy Min P = 1 Tại \(x=1;y=2;z=1\)

3 tháng 1 2021

em ko hiểu mọi người thích cái người ? tk cho mà lại thích nhỉ 

em thì thích OLM lựa chọn để có điểm cơ như thế mới có điểm .