\(\frac{x}{2}+\frac{8}{y}\le2\)

tìm GTNN của <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:

\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)

\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)

Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)

Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)

Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)

Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8

DD
25 tháng 5 2021

\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)

\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

30 tháng 5 2020

Đặt: \(\frac{1}{y}=t\)> 0

Ta có: \(x+t\le1\)

\(P=\frac{xt}{2}+\frac{1}{xt}=\frac{xt}{2}+\frac{1}{32xt}+\frac{31}{32xt}\ge2\sqrt{\frac{xt}{2}.\frac{1}{32xt}}+\frac{31}{\frac{32\left(x+t\right)^2}{4}}=\frac{33}{8}\)

Dấu "=" xảy ra <=> x = t = 1/2 hay x = 1/2 và y = 2 

Vậy GTNN của P = 33/8 đạt tại x =1/2 và y =2 .

25 tháng 11 2016

min=43.

cho mk ý kiến nhé

25 tháng 11 2016

\(B=\left(8x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(\frac{4}{x}+\frac{5}{y}\right)\ge2\sqrt{8x.\frac{2}{x}}+2\sqrt{18y.\frac{2}{y}}+23..\)

  \(B\ge2.4+2.6+23=43\)

B min = 43 khi \(\hept{\begin{cases}8x=\frac{2}{x}\\18y=\frac{2}{y}\\\frac{4}{x}=\frac{5}{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}.}}\)

22 tháng 1 2017

Ta có: \(1\ge x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)

\(\Rightarrow P\ge2\sqrt{\frac{1}{xy}}\cdot\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}\)

Mà \(\frac{1}{xy}+xy=\frac{15}{16}\cdot\frac{1}{xy}+\frac{1}{16xy}+xy\)

\(\ge\frac{15}{16}\cdot4+2\sqrt{\frac{1}{16xy}\cdot xy}=\frac{15}{16}\cdot4+\frac{2}{4}=\frac{17}{4}\)

\(\Rightarrow P\ge2\cdot\frac{\sqrt{17}}{2}=\sqrt{17}\) xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 1 2017

v~ máy mk ko gõ dc chữ "x" 

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

20 tháng 2 2019

                                    Lời giải

Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)

Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)

\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)

\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)

\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)

Vậy ...