Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\)
\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)
Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c
B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1
Với a+b+c≠0a+b+c≠0
a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b
Có: \(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta được:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{c+b+a}\)
\(=\dfrac{a+b+c}{a+b+c}\)
Xét: a + b + c = 0 \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)(1)
Thay (1) vào A, ta có:
\(A=\dfrac{-c.\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a + b + c ≠ 0:
\(\Rightarrow\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=1\)
\(\Rightarrow\dfrac{a+b}{c}-1=\dfrac{a+c}{b}-1=\dfrac{b+c}{a}-1=1\)
\(\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}=\dfrac{b+c}{a}=2\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)(2)
Thay (2) vào A, ta có:
\(A=\dfrac{2c.2a.2b}{abc}=8\)
Vậy...
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)
Lời giải:
Bạn tham khảo cách làm tương tự tại đây:
https://hoc24.vn/cau-hoi/cho-dfracab-2017ccdfracbc-2017aadfracca-2017bbvoi-a-b-c-ne0-tinhp-left1dfracabrightleft1dfracb.161494910584
Kết quả $P=8$ hoặc $P=-1$
E xin lỗi, e ko nhận câu trả lời này vì có chứa link tới các web khác
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=1\)
ta có: \(\dfrac{a+b-c}{c}=1\Leftrightarrow\dfrac{a+b}{c}-1=1\Leftrightarrow\dfrac{a+b}{c}=2\Rightarrow a+b=2c\)
\(\dfrac{a+c-b}{b}=1\Leftrightarrow\dfrac{a+c}{b}=2\Leftrightarrow a+b=2b\)
\(\dfrac{b+c-a}{a}=1\Leftrightarrow\dfrac{b+c}{a}=2\Leftrightarrow b+c=2a\)
<=>\(A=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2c\cdot2a\cdot2b}{abc}=\dfrac{8abc}{abc}=8\)
tớ cảm ơn nhó