K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2020

Ta có:

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}.\)

\(\Rightarrow\frac{a+b}{3}=\frac{b+c}{2}=\frac{c+a}{1}.\)

Đặt \(\frac{a+b}{3}=\frac{b+c}{2}=\frac{c+a}{1}=k\Rightarrow\left\{{}\begin{matrix}a+b=3k\\b+c=2k\\c+a=1k\end{matrix}\right.\)

\(a+b+b+c+c+a=3k+2k+1k\)

\(\Rightarrow2a+2b+2c=\left(3+2+1\right).k\)

\(\Rightarrow2.\left(a+b+c\right)=6k\)

\(\Rightarrow a+b+c=6k:2\)

\(\Rightarrow a+b+c=3k.\)

\(\Rightarrow c=3k-a-b\)

\(\Rightarrow c=3k-3b\)

\(\Rightarrow c=0.\)

Lại có: \(P=\frac{3a+3b+2019c}{a+b-2020c}\)

\(\Rightarrow P=\frac{3a+3b+2019.0}{a+b-2020.0}\)

\(\Rightarrow P=\frac{3a+3b+0}{a+b-0}\)

\(\Rightarrow P=\frac{3a+3b}{a+b}\)

\(\Rightarrow P=\frac{3.\left(a+b\right)}{a+b}\)

\(\Rightarrow P=3.\)

Vậy \(P=3.\)

Chúc bạn học tốt!